615
Views
18
CrossRef citations to date
0
Altmetric
Extra Views

The multiple roles of Bub1 in chromosome segregation during mitosis and meiosis

Pages 58-63 | Published online: 01 Jan 2010
 

Abstract

Aneuploidy, any deviation from an exact multiple of the haploid number of chromosomes, is a common occurrence in cancer and represents the most frequent chromosomal disorder in newborns. Eukaryotes have evolved mechanisms to assure the fidelity of chromosome segregation during cell division that include a multiplicity of checks and controls. One of the main cell division control mechanisms is the spindle assembly checkpoint (SAC) that monitors the proper attachment of chromosomes to spindle fibers and prevents anaphase until all kinetochores are properly attached. The mammalian SAC is composed by at least 14 evolutionary-conserved proteins that work in a coordinated fashion to monitor the establishment of amphitelic attachment of all chromosomes before allowing cell division to occur. Among the SAC proteins, the budding uninhibited by benzimidazole protein 1 (Bub1), is a highly conserved protein of prominent importance for the proper functioning of the SAC. Studies have revealed many roles for Bub1 in both mitosis and meiosis, including the localization of other SAC proteins to the kinetochore, SAC signaling, metaphase congression and the protection of the sister chromatid cohesion. Recent data show striking sex specific differences in the response to alterations in Bub1 activity. Proper Bub1 functioning is particularly important during oogenesis in preventing the generation of aneuploid gametes that can have detrimental effects on the health status of the fetus and the newborn. These data suggest that Bub1 is a master regulator of SAC and chromosomal segregation in both mitosis and meiosis. Elucidating its many essential functions in regulating proper chromosome segregation can have important consequences for preventing tumorigenesis and developmental abnormalities.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.