1,064
Views
43
CrossRef citations to date
0
Altmetric
Perspective

Differential localization of ATM is correlated with activation of distinct downstream signaling pathways

&
Pages 3709-3710 | Published online: 15 Sep 2010
 

Abstract

ATM, the gene mutated in the genetic disease ataxia telangiectasia (AT), is a well-known protein involved in the DNA double-strand break response, where it plays an important role in sensing damage and signaling to DNA repair machinery and cell cycle checkpoints. However, a number of recent papers, including ours have found that ATM also plays important roles outside of the nucleus, which may explain some of the phenotypic features seen in AT patients. Our research into mechanisms of TSC2 regulation helped uncover a pathway upstream of TSC2 that is regulated by cytoplasmic ATM in response to ROS initiated by ATM activation of LKB1 and AMPK. We found that TSC2 activation results in mTORC1 repression and subsequent induction of autophagy. Elucidation of this stress response pathway provides a molecular mechanism for ATM signaling in the cytoplasm, and lays the groundwork for further studies on how ATM activity is regulated beyond DNA damage in different cellular compartments.

Figures and Tables

Table 1 Summary of similarities and differences between cytoplasmic and nuclear ATM signaling and cellular outcomes

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.