416
Views
7
CrossRef citations to date
0
Altmetric
Extra Views

Spinal muscular atrophy: A new player joins the battle for SMN2 exon 7 splicing

Pages 3874-3879 | Published online: 01 Oct 2010
 

Abstract

Spinal Muscular Atrophy (SMA) is a neurodegenerative disease with high impact in the human population, being the leading genetic cause of death in infancy. No cure is currently available for SMA, raising interest in the development of novel therapeutic strategies for this disease. Much of the effort in this sense has been aimed at increasing the SMN2-derived transcript levels, either by improving transcription rate or by reprogramming exon 7 splicing. Herein, we discuss recent findings on the regulation of SMN2 gene expression, focusing on splicing modulation as a therapeutic target. We review the literature regarding splicing factors involved in the regulation of exon 7 splicing in SMN2, and discuss the role played in this process by the RNA binding protein Sam68, a novel crucial regulator of SMN2 splicing.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.