1,490
Views
100
CrossRef citations to date
0
Altmetric
Research Paper

ABCA1 gene promoter DNA methylation is associated with HDL particle profile and coronary artery disease in familial hypercholesterolemia

, , , , &
Pages 464-472 | Received 29 Nov 2011, Accepted 06 Feb 2012, Published online: 01 May 2012
 

Abstract

High-density lipoproteins cholesterol (HDL-C) level, a strong coronary artery disease (CAD) clinical biomarker, shows significant interindividual variability. However, the molecular mechanisms involved remain mostly unknown. ATP-binding cassette A1 (ABCA1) catalyzes the cholesterol transfer from peripheral cells to nascent HDL particles. Recently, a differentially methylation region was identified in ABCA1 gene promoter locus, near the first exon. Therefore, we hypothesized that DNA methylation changes at ABCA1 gene locus is one of the molecular mechanisms involved in HDL-C interindividual variability. The study was conducted in familial hypercholesterolemia (FH), a monogenic disorder associated with a high risk of CAD . Ninety-seven FH patients (all p.W66G for the LDLR gene mutation and not under lipid-lowering treatment) were recruited and finely phenotyped for DNA methylation analyses at ABCA1 gene locus. ABCA1 DNA methylation levels were found negatively correlated with circulating HDL-C (r = -0.20; p = 0.05), HDL2-phospholipid levels (r = -0.43; p = 0.04), and with a trend for association with HDL peak particle size (r = -0.38; p = 0.08). ABCA1 DNA methylation levels were also found associated with prior history of CAD (CAD = 40.2% vs. without CAD = 34.3%; p = 0.003). These results suggest that epigenetic changes within the ABCA1 gene promoter contribute to the interindividual variability in plasma HDL-C concentrations and are associated with CAD expression. These findings could change our understanding of the molecular mechanisms involved in the pathophysiological processes leading to CAD.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.