424
Views
22
CrossRef citations to date
0
Altmetric
Review

Transcription Factor Networks in Embryonic Stem Cells and Testicular Cancer and the Definition of Epigenetics

Pages 37-42 | Received 09 Jan 2007, Accepted 27 Feb 2007, Published online: 15 Mar 2007
 

Abstract

The stem cell phenotype of human and murine ES cells has recently been shown to be maintained by a self-stabilizing network of transcription factors, NANOG, OCT4, and SOX2. These factors maintain their own and each other’s transcription, activating by combinatorial interactions genes responsible for the ES cell phenotype while repressing genes required for differentiation. This ‘core circuitry’ interacts with an ‘expanded circuitry’ encompassing signal transduction and chromatin regulator proteins. During ES cell differentiation the crucial transcription factors are down-regulated by epigenetic mechanisms, including DNA methylation. Aberrant activation of the ES transcription factor network elicited by increased dosage of an embryonic gene cluster at 12p including NANOG, together with additional genetic and epigenetic alterations, appears to be a crucial event in the genesis of testicular germ cell cancers. Intriguingly, the ES cell transcription factor network fits current as well as past definitions of ‘epigenetic’.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.