215
Views
5
CrossRef citations to date
0
Altmetric
Extra View

Make room for dedifferentiation

Pages 283-285 | Received 19 Aug 2009, Accepted 25 Oct 2009, Published online: 31 Dec 2009
 

Abstract

The reversal of cellular differentiation, or dedifferentiation, has fascinated biologists for many decades. While cells can be re-programmed extensively in culture, examples of in vivo dedifferentiation have recently emerged in both vertebrate and invertebrate systems, allowing for analysis of this intriguing process under more physiologically relevant conditions. Studies suggest that dedifferentiation occurs not only during large-scale cellular regeneration, but also at low levels to replenish stem cells lost due to normal turnover. Our recent paper demonstrates a novel method to induce the dedifferentiation of lineage-committed stem cell daughters back into germline stem cells (GSCs) in the Drosophila testis. We also show a requirement for activation of Janus kinase-signal transducer and activator of transcription (Jak-STAT) signaling in this process, and suggest that normally non-motile germline cells gain mobility and out-compete resident somatic cells for occupancy in the stem cell-maintaining microenvironment (niche). Here, we discuss what our findings reveal about stem cell competition and the capacity of various cell types to dedifferentiate.

This article refers to:

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.