1,042
Views
34
CrossRef citations to date
0
Altmetric
Research Paper

The development of gut microbiota in critically ill extremely low birth weight infants assessed with 16S rRNA gene based sequencing

, , , , , , & show all
Pages 304-503 | Received 18 Oct 2013, Accepted 10 Apr 2014, Published online: 10 Apr 2014
 

Abstract

Objective: An increasing number of studies that are using high-throughput molecular methods are rapidly extending our knowledge of gut microbial colonization in preterm infants whose immaturity and requirement for extensive treatment may result in altered colonization process. We aimed to describe the profile of gut microbiota in 50 extremely low birth weight (<1200 g) critically ill infants at three different time points during the first two months of life by using 16S rRNA gene specific sequencing.

 

Patients and Methods: Stool samples were collected at the age of one week, one month and two months. Bacterial community profiling was done using universal amplification of 16S rRNA gene and 454 pyrosequencing.

Results: The diversity of gut microbiota in preterm neonates in the first week of life was low but increased significantly over two months. The gut microbiota was dominated by facultative anaerobic bacteria (Staphylococcus spp. and Enterobacteriaceae) and lacked colonization with bacteria known to provide resistance against pathogens (Bacteroides, Bifidobacterium, and Lactobacillus) throughout the study. Colonization of Escherichia coli and uncultured Veillionella was positively correlated with maturity. Infants born to mothers with chorioamnionitis had significantly higher bacterial diversity than those without.

Conclusions: High prevalence and abundance of potentially pathogenic Enterobacteriaceae and Staphylococcaceae with low prevalence and abundance of colonization resistance providing taxa bifidobacteria, Bacteroides and lactobacilli may lead to high infection risk via microbial translocation from the gut. Additionally, our data suggest that maternal chorioamnionitis may have an effect on the diversity of infants’ gut microbiota; however, the mechanisms involved remain to be elucidated.

10.4161/gmic.28849

Disclosure of Potential Conflicts of Interest

No potential conflict of interest was disclosed.

Acknowledgments

This study was supported by grants of Estonian Ministry of Education and Research (target financing No SF0180132s08) and the Estonian Science Foundation (grant No 6984 and grant No 9059).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.