650
Views
13
CrossRef citations to date
0
Altmetric
Research Paper

Mucosal and systemic antibody responses to potential Pseudomonas aeruginosa vaccine protein antigens in young children with cystic fibrosis following colonization and infection

, , , , , & show all
Pages 506-514 | Received 10 Oct 2012, Accepted 23 Oct 2012, Published online: 18 Dec 2012
 

Abstract

Pseudomonas aeruginosa is an important prognostic determinant in cystic fibrosis (CF). Little is known however, about P. aeruginosa induced local mucosal and systemic immune responses. Twenty CF children were categorized according to their P. aeruginosa status: (1) chronic lower respiratory tract infection (LRTI), (2) prior successfully treated initial LRTI, (3) isolated upper respiratory tract (URT) colonization, and (4) no known URT colonization or previous LRTI. Their antibody responses, and those of six non-CF disease controls, in serum and bronchoalveolar lavage (BAL) fluid to potential P. aeruginosa vaccine antigens outer membrane protein F (OprF), outer membrane protein H (OprH), catalase A (KatA) and a whole killed cell (WKC) extract were evaluated. Outer membrane protein G (OprG) responses were also measured in blood. Natural exposure, colonization and infection resulted in detectable antibody levels in BAL and serum in all CF groups. Both chronically infected and URT colonized CF children had substantially elevated immunoglobulin A antibody levels in the BAL fluid and sera toward the WKC extract and OprF antigen compared with the other groups of CF children and non-CF controls. The serum levels of specific P. aeruginosa antibodies involving immunoglobulin G and M isotypes increased with chronic LRTI, especially antibody levels to KatA, OprH and WKC extract, which were substantially greater in chronically infected children compared with all other groups. In conclusion, natural exposure, URT colonization and LRTI with P. aeruginosa all induce substantial mucosal and systemic antibody responses to potential vaccine antigens with chronically infected CF children having the highest levels.

Submitted

10/10/12

Accepted

10/23/12

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

This study was supported by grants from the Royal Children’s Hospital Research Foundation. The participation of the children and their families in this study is gratefully acknowledged. We thank the Department of Anaesthesia, Royal Children’s Hospital, Melbourne, Australia, for their assistance with obtaining BAL samples and Penny Chapman for her editorial assistance.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.