2,000
Views
27
CrossRef citations to date
0
Altmetric
Research Paper

Correlation between ELISA and pseudovirion-based neutralisation assay for detecting antibodies against human papillomavirus acquired by natural infection or by vaccination

, , , , , , , , , & show all
Pages 740-746 | Received 03 Nov 2013, Accepted 21 Dec 2013, Published online: 02 Jan 2014
 

Abstract

A pseudovirion-based neutralisation assay (PBNA) has been considered the gold standard for measuring specific antibody responses against human papillomavirus (HPV). However, this assay is labor intensive and therefore very difficult to implement in large-scale studies. Previous studies have evaluated the agreement between virus-like particle (VLP)-based ELISA and PBNA for measuring HPV vaccine-induced antibodies. However, the concordance of these assays to detect antibodies induced by natural infection has not yet been fully elucidated. In this study, the results of an Escherichia coli (E. coli)-expressed VLP-based ELISA were found to be highly concordant with those of a baculovirus-expressed VLP-based ELISA (r = 0.96 and 0.97 for HPV-16 and HPV-18) when detecing HPV vaccine induced antibodies and the concordance was medium (r = 0.68 and 0.68 for HPV-16 and HPV-18) when assessing natural infection induced antibodies. The results of the E. coli expressed VLP-based ELISA correlated well with those of the PBNA when testing 1020 post-vaccination human sera collected at one month after vaccination with the E. coli expressed VLP-based bivalent HPV vaccine (r = 0.83 and 0.81 for HPV-16 and HPV-18). The agreement and correlation were moderate (kappa < 0.3 for both HPV types 16 and 18, r = 0.59 and 0.68 for HPV-16 and HPV-18, respectively) when assessing 1600 serum samples from unvaccinated women of age 18–25 years. In conclusion, the VLP-based ELISA is an acceptable surrogate for the neutralizing antibody assay in measuring vaccine responses. However, the use of the VLP-based ELISA in epidemiological studies should be carefully considered.

10.4161/hv.27619

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

This work was supported by National Major Scientific and Technological Special Project (2012ZX09101316), the National High-tech R&D Program (863 Program) (2012AA02A408), the International Science and Technology Cooperation Program of China (2011DFG33050), and the Xiamen Scientific Project (3502Z20127027).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.