151
Views
3
CrossRef citations to date
0
Altmetric
Mini-Review

Infectious Fold and Amyloid Propagation in Podospora anserina

Pages 44-47 | Received 10 Feb 2007, Accepted 28 Feb 2007, Published online: 01 Mar 2007
 

Abstract

Aggregation of amyloid proteins is involved in serious neurodegenerative disorders such as Alzheimer disease and transmissible encephalopathies. The concept of an infectious protein (prion) proposed as the scrapie agent was successfully validated for several proteins of yeast and fungi. Ure2, Sup35 and Rnq1 in Saccharomyces cerevisiae and HET-s in Podospora anserina have been genetically, then biochemically identified as prion proteins. Studies on these proteins have brought critical informations on the mechanisms of prions appearance and propagation. The prion phenotype correlates with the aggregation state of these particular proteins. In vitro, the recombinant prion proteins form amyloid fibers characterized by a rich β-sheet content. In a previous work on the HET-s prion protein of Podospora we have demonstrated the infectivity of HET-s recombinant amyloid aggregates. More recently, the structural analysis of the prion domain of HET-s associated with in vivo mutagenesis allowed us to propose a model for the infectious fold of the HET-s prion domain. Further investigations to complete this model are discussed in this review as well as relevant questions about the [Het-s] system of Podospora anserina.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.