1,211
Views
52
CrossRef citations to date
0
Altmetric
Mini-Review

The pathology roadmap in Parkinson disease

&
Pages 85-91 | Received 27 Oct 2012, Accepted 11 Jan 2013, Published online: 01 Jan 2013
 

Abstract

An under-appreciated clue about pathogenesis in Parkinson disease (PD) is the distribution of pathology in the early and middle stages of the disease. This pathological ‘roadmap’ shows that in addition to dopaminergic neurons in the substantia nigra pars compacta (SNc), a significant number of other central and peripheral neuronal populations exhibit Lewy pathology, phenotypic dysregulation or frank degeneration in PD patients. This spatially distributed, at-risk population of neurons shares a number of features, including autonomously generated activity, broad action potentials, low intrinsic calcium buffering capacity and long, poorly myelinated, highly branched axons. Many, and perhaps all, of these traits add to the metabolic burden in these neurons, suggesting that mitochondrial deficits could drive pathogenesis in PD—in agreement with a large segment of the literature. What is less clear is how this neuronal phenotype might shape the susceptibility to proteostatic dysfunction or to the spread of α-synuclein fibrils deposited in the extracellular space. The review explores the literature on these issues and their translational implications.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.