1,510
Views
15
CrossRef citations to date
0
Altmetric
EXTRA VIEW

Cellular prion protein: A co-receptor mediating neuronal cofilin-actin rod formation induced by β-amyloid and proinflammatory cytokines

, &
Pages 375-380 | Received 02 Jul 2014, Accepted 13 Aug 2014, Published online: 08 Jan 2015
 

Abstract

Increasing evidence suggests that proteins exhibiting “prion-like” behavior cause distinct neurodegenerative diseases, including inherited, sporadic and acquired types. The conversion of cellular prion protein (PrPC) to its infectious protease resistant counterpart (PrPRes) is the essential feature of prion diseases. However, PrPC also performs important functions in transmembrane signaling, especially in neurodegenerative processes. Beta-amyloid (Aβ) synaptotoxicity and cognitive dysfunction in mouse models of Alzheimer disease are mediated by a PrPC-dependent pathway. Here we review how this pathway converges with proinflammatory cytokine signaling to activate membrane NADPH oxidase (NOX) and generate reactive oxygen species (ROS) leading to dynamic remodeling of the actin cytoskeleton. The NOX signaling pathway may also be integrated with those of other transmembrane receptors clustered in PrPC-enriched membrane domains. Such a signal convergence along the PrPC-NOX axis could explain the relevance of PrPC in a broad spectrum of neurodegenerative disorders, including neuroinflammatory-mediated alterations in synaptic function following traumatic brain injury. PrPC overexpression alone activates NOX and generates a local increase in ROS that initiates cofilin activation and formation of cofilin-saturated actin bundles (rods). Rods sequester cofilin from synaptic regions where it is required for plasticity associated with learning and memory. Rods can also interrupt vesicular transport by occluding the neurite within which they form. Through either or both mechanisms, rods may directly mediate the synaptic dysfunction that accompanies various neurodegenerative disorders.

Acknowledgment

We thank Laurie Minamide, Alisa Shaw and Dr. Mark Zabel for comments and critical reading of the manuscript.

Funding

Supported in part by a grant from National Institutes of Health (AG044812 to JRB).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.