454
Views
1
CrossRef citations to date
0
Altmetric
Article Addendum

Effects of missense mutation on structure and function of photoreceptor

, , &
Pages 589-591 | Published online: 20 Apr 2012
 

Abstract

Phytochromes (PHYs) are photoreceptors of the red (R ~660  nm) and far-red (FR ~730 nm) light, and they control a wide range of responses affecting crucial aspects of plant life. There are five genes PHYA-PHYE encoding for phytochromes of different but overlapping function. One of these, PHYA has the unique function controlling specific responses in high irradiance far-red, as well as in very weak light. Appropriate PHYA functioning requires not only the photoreversibility of molecule but also the proper nuclear localization and degradation of receptor. Recently, we identified and described a mutant PHYA allele (phyA-5) in Arabidopsis thaliana, which showed reduced binding affinity to FHY1/FHL, the proteins regulating its nuclear transport, resulting in impaired nuclear localization and altered signaling under certain conditions. We present here a hypothesis to explain how the identified amino acid substitution may lead to structural changes manifested as altered signaling and phenotype displayed by the phyA-5 mutant.

This article refers to:

Acknowledgments

Work in Szeged, Hungary was supported by the Hungarian Scientific Research Fund [OTKA-81399] to A.V., and by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences to B.L. Work in Freiburg, Germany was supported by an Sonderforschungsbereich [SFB 592] grant to E.S.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.