830
Views
6
CrossRef citations to date
0
Altmetric
Addendum

Interactive regulation of nitrogen and aluminum in rice

&
Article: e24355 | Received 14 Mar 2013, Accepted 18 Mar 2013, Published online: 26 Mar 2013
 

Abstract

Despite many studies on the high aluminum (Al) tolerance of rice (Oryza sativa), its exact mechanisms remain largely unknown. It is also unclear why Al improves growth of some plants. Our research on interactions between nitrogen (N) and Al may help to understand these phenomena. Previously, we found that ammonium-supplemented rice was more Al tolerant than nitrate-supplemented rice. Furthermore, Al-tolerant rice varieties preferred ammonium, while Al-sensitive ones preferred nitrate; in fact, Al tolerance was significantly correlated with the ammonium/nitrate preference among rice varieties. Al even enhanced growth of ammonium-supplemented rice, while it inhibited growth of nitrate-supplemented rice. Based on our own and other reports on N-Al interactions, we propose that intermediate products of N metabolism may play a role in rice Al tolerance. Al-enhanced ammonium utilization may explain why Al promotes growth of some plants, since Al often coexists with higher levels of ammonium than nitrate in acid soils.

This article refers to:

Disclosure of Potential Conflicts of Interest

The authors have no potential conflicts of interest to declare.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 41025005, 31000933 and 41230855).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.