538
Views
7
CrossRef citations to date
0
Altmetric
Article Addendum

Subcellular localization of overexpressed maize AChE gene in rice plant

&
Pages 576-577 | Received 08 Feb 2008, Accepted 15 Feb 2008, Published online: 01 Aug 2008
 

Abstract

The ACh-mediated system consisting of acetylcholine (ACh), acetylcholine receptor (AChR) and acetylcholinesterase (AChE) is fundamental for nervous system function in animals and insects. Although plants lack a nervous system, both ACh and ACh-hydrolyzing activity have been widely recognized in the plant kingdom. The function of the plant ACh-mediated system is still unclear, despite more than 30 years of research. To understand ACh-mediated systems in plants, we previously purified maize AChE and cloned the corresponding gene from maize seedlings (Plant Physiology). In a recent paper in Planta, we also purified and cloned AChE from the legume plant siratro (Macroptilium atropurpureum). In comparison with electric eel AChE, both plant AChEs showed enzymatic properties of both animal AChE and animal butyrylcholinesterase. On the other hand, based on Pfam protein family analysis, both plant AChEs contain a consensus sequence of the lipase GDSL family, while the animal AChEs possess a distinct alpha/beta-hydrolase fold superfamily sequence, but no lipase GDSL sequence. Thus, neither plant AChE belongs to the well-known AChE family, which is distributed throughout the animal kingdom. To address the possible physiological roles of plant AChEs, we herein report our data from the immunological analysis of the overexpressed maize AChE gene in plants.

Acknowledgements

This research was supported by “Ground-based Research Program for Space Utilization” promoted by Japan Space Forum.

Figures and Tables

Figure 1 Subcellular localization of maize AChE in leaf and stem of transgenic rice. (A) Leaf cross-section of transgenic rice; (B) leaf cross-section of control; (C) stem cross-section of transgenic rice; (D) stem cross-section of control. Each section was probed with maize AChE antibody and then visualized with Alexa Fluor 488-conjugated secondary antibody. Control indicates rice plants transfected with p2K-1+ vector only. Arrowheads indicate localization of maize AChE.

Figure 1 Subcellular localization of maize AChE in leaf and stem of transgenic rice. (A) Leaf cross-section of transgenic rice; (B) leaf cross-section of control; (C) stem cross-section of transgenic rice; (D) stem cross-section of control. Each section was probed with maize AChE antibody and then visualized with Alexa Fluor 488-conjugated secondary antibody. Control indicates rice plants transfected with p2K-1+ vector only. Arrowheads indicate localization of maize AChE.

Addendum to:

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.