278
Views
16
CrossRef citations to date
0
Altmetric
Article Addendum

Type and cellular location of reactive oxygen species determine activation or suppression of programmed cell death in Arabidopsis suspension cultures

Pages 467-468 | Received 02 Feb 2010, Accepted 02 Feb 2010, Published online: 01 Apr 2010
 

Abstract

Plant programmed cell death (PCD) is a cell-controlled process that plays an essential role in development and stress responses. Apoptotic-like PCD (AL-PCD) results in a characteristic cell corpse containing a condensed cytoplasm. We recently showed that chloroplast-produced reactive oxygen species (ROS) can play a role in regulating AL-PCD. Here we show that ROS may play a variety of roles in AL-PCD regulation, depending on type and localisation of the ROS activity. Treatment of Arabidopsis thaliana cells with the antioxidants ascorbate and glutathione, which are not specific in the forms of ROS that they scavenge, resulted in increased heat stress-induced AL-PCD. However, treatment with catalase, which specifically scavenges hydrogen peroxide (H2O2) only, temporally promoted cell survival and suppressed AL-PCD after the heat treatment. These results suggest that H2O2 functions as an important mobile signal that positively regulates AL-PCD in plants and that other ROS forms may play different roles in AL-PCD regulation, perhaps by acting as positive or negative regulators of components of AL-PCD signaling pathways.

This article is related to:

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.