353
Views
11
CrossRef citations to date
0
Altmetric
Short Communication

Microspore reprogramming to embryogenesis induces changes in cell wall and starch accumulation dynamics associated with proliferation and differentiation events

Pages 341-345 | Received 12 Feb 2010, Accepted 12 Feb 2010, Published online: 01 Apr 2010
 

Abstract

Plant cell wall polymers are regulated during development, but the specific roles of their different molecular components and the functional meaning of cell wall changes in different cell types and cell processes are still unclear. In the present work the presence and distribution of different cell wall components in Capsicum annuum L. pollen have been analysed in situ in order to monitor how they change during two developmental programmes. These programmes are: pollen development, which is a differentiation process, and stress-induced pollen reprogramming to embryogenesis, which involves proliferation followed later by differentiation processes. Specific antibodies recognizing the major cell wall polymers, the major hemicellulose, xyloglucan (XG), the rhamnogalacturonan II (RGII) pectin domain, and high- and low-methyl-esterified pectins were used for both dot-blot and immunolocalization assays at light and electron microscopy levels during defined developmental stages. For comparison purposes, a similar approach was also used in zygotic embryogenesis and root apical tip growth. Results showed differences in the distribution pattern of these molecular complexes, in the proportion of esterified and de-esterified pectins in the two pollen developmental pathways, and defined wall changes during microspore reprogramming. These changes were associated with proliferation and differentiation events where highly esterified pectins were characteristic of proliferation, while de-esterified pectins, XG and RGII were abundant in walls of differentiating cells. Starch deposits were also studied and the results revealed changes in starch synthesis dynamics after switching the pollen embryogenic developmental programme. These changes occurred together with modifications in the distribution patterns of cell wall polymers, starch accumulation being associated with cell differentiation. As in the case of proliferating cells, esterified pectins were also abundant in the apertures of developing microspores, regions of new cell wall formation., The different distribution patterns of cell wall polymers were common for proliferating cells and differentiating cells in all the plant systems analysed, including zygotic embryos and root tip cells, suggesting that these patterns are markers of proliferation and differentiation events as well as markers of pollen reprogramming to embryogenesis.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.