Publication Cover
Applicable Analysis
An International Journal
Volume 53, 1994 - Issue 1-2
188
Views
92
CrossRef citations to date
0
Altmetric
Original Articles

Global existence and uniqueness of solutions of the time-dependent ginzburg-landau model for superconductivity

Pages 1-17 | Received 12 Jan 1993, Published online: 02 May 2007

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (4)

Shengqi Lu, Miaochao Chen & Qilin Liu. (2021) Global well-posedness of axially symmetric weak solutions to the Ginzburg–Landau model in superconductivity. Applicable Analysis 100:10, pages 2163-2169.
Read now
Jishan Fan & Tohru Ozawa. (2016) Weak solutions to the Ginzburg-Landau model in superconductivity with the temporal gauge. Applicable Analysis 95:9, pages 2029-2038.
Read now
K.-H. Hoffmann & Jun Zou. (1997) Finite element analysis on the lawrence-doniach model for layered superconductors. Numerical Functional Analysis and Optimization 18:5-6, pages 567-589.
Read now

Articles from other publishers (88)

Zhiyong Si. (2024) A generalized scalar auxiliary variable method for the time-dependent Ginzburg-Landau equations. Acta Mathematica Scientia 44:2, pages 650-670.
Crossref
Limin MaZhonghua Qiao. (2023) An Energy Stable and Maximum Bound Principle Preserving Scheme for the Dynamic Ginzburg–Landau Equations under the Temporal Gauge. SIAM Journal on Numerical Analysis 61:6, pages 2695-2717.
Crossref
Yunxia Wang & Zhiyong Si. (2023) A convex splitting method for the time-dependent Ginzburg-Landau equation. Numerical Algorithms.
Crossref
Takeshi Mizushima & Masahiro Sato. (2023) Imprinting spiral Higgs waves onto superconductors with vortex beams. Physical Review Research 5:4.
Crossref
Huadong Gao & Wen Xie. (2023) A Finite Element Method for the Dynamical Ginzburg–Landau Equations under Coulomb Gauge. Journal of Scientific Computing 97:1.
Crossref
Erhan Coskun. (2023) On the numerical stability and transitional stages of time-dependent Ginzburg–Landau model of superconductivity. Physica A: Statistical Mechanics and its Applications 626, pages 129036.
Crossref
Dan Wang, Meng Li & Yu Lu. (2023) Unconditionally convergent and superconvergent analysis of second-order weighted IMEX FEMs for nonlinear Ginzburg-Landau equation. Computers & Mathematics with Applications 146, pages 84-105.
Crossref
Huadong GaoWeiwei Sun. (2023) Optimal Analysis of Non-Uniform Galerkin-Mixed Finite Element Approximations to the Ginzburg–Landau Equations in Superconductivity. SIAM Journal on Numerical Analysis 61:2, pages 929-951.
Crossref
Huoyuan Duan & Qiuyu Zhang. (2022) Residual-Based a Posteriori Error Estimates for the Time-Dependent Ginzburg–Landau Equations of Superconductivity. Journal of Scientific Computing 93:3.
Crossref
T. Okugawa, S. Park, P. Recher & D. M. Kennes. (2022) Vortex control in superconducting Corbino geometry networks. Physical Review B 106:2.
Crossref
T. Okugawa, A. Benyamini, A. J. Millis & D. M. Kennes. (2022) Anti-Poiseuille flow: Increased vortex velocity at superconductor edges. Physical Review B 105:22.
Crossref
Jishan Fan & Tohru Ozawa. (2021) Regularity Criteria for a Ginzburg-Landau-Navier-Stokes System. Funkcialaj Ekvacioj 64:3, pages 349-360.
Crossref
Hongjun Gao, Jishan Fan & Gen Nakamura. (2021) Weak-very weak uniqueness to the time-dependent Ginzburg–Landau model for superconductivity in . Results in Applied Mathematics 12, pages 100183.
Crossref
Soojung Kim & Xing-Bin Pan. (2021) Long time behavior and field-induced instabilities of smectic liquid crystals. Journal of Functional Analysis 281:3, pages 109036.
Crossref
Jishan Fan, Yuxi Hu & Gen Nakamura. (2021) Local well‐posedness for an isentropic compressible Ginzburg–Landau–Navier–Stokes with vacuum. Mathematische Nachrichten 294:5, pages 862-876.
Crossref
Erhan Coskun. (2021) On the properties of a single vortex solution of Ginzburg–Landau model of superconductivity. Physica A: Statistical Mechanics and its Applications 568, pages 125731.
Crossref
Zhidong Chen, Huadong Yong & Youhe Zhou. (2021) Manipulation of vortex arrays with thermal gradients by applying dynamic heat sources. Superconductor Science and Technology 34:4, pages 045005.
Crossref
Qiang Du, Lili Ju, Xiao Li & Zhonghua Qiao. (2021) Maximum Bound Principles for a Class of Semilinear Parabolic Equations and Exponential Time-Differencing Schemes. SIAM Review 63:2, pages 317-359.
Crossref
Jishan Fan, Yasuhide Fukumoto & Yong Zhou. (2020) Regularity criteria for a Ginzburg‐Landau‐Navier‐Stokes in superfluidity in Rn. Mathematical Methods in the Applied Sciences 43:10, pages 6542-6552.
Crossref
Zhidong Chen, Huadong Yong & Youhe Zhou. (2020) The heat dissipations and vortices motion in the open superconducting square tube. Physica C: Superconductivity and its Applications 574, pages 1353659.
Crossref
Jishan Fan, Lulu Jing, Gen Nakamura & Tong Tang. (2019) A Note on a Non-isothermal Model for Superconductivity. Bulletin of the Malaysian Mathematical Sciences Society 43:4, pages 3027-3034.
Crossref
Jishan Fan & Yong Zhou. (2020) A note on the time-dependent Ginzburg–Landau model for superconductivity in . Applied Mathematics Letters 103, pages 106208.
Crossref
Jishan Fan & Yong Zhou. (2020) A regularity criterion to the time-dependent Ginzburg-Landau model for superconductivity in . Journal of Mathematical Analysis and Applications 483:2, pages 123653.
Crossref
Jishan Fan &  Yong Zhou. (2020) Existence and uniqueness for a Ginzburg-Landau system for superconductivity. Electronic Journal of Differential Equations 2020:01-132.
Crossref
Jishan Fan, Zhaoyun Zhang & Yong Zhou. (2019) Regularity Criteria for a Ginzburg–Landau–Navier–Stokes in a Bounded Domain. Bulletin of the Malaysian Mathematical Sciences Society 43:1, pages 1009-1024.
Crossref
Jishan Fan & Tohru Ozawa. (2018) Global Well-posedness of Weak Solutions to the Time-dependent Ginzburg-Landau Model for Superconductivity. Taiwanese Journal of Mathematics 22:4.
Crossref
Jishan Fan, Bessem Samet & Yong Zhou. (2018) Uniform regularity for a 3D time-dependent Ginzburg–Landau model in superconductivity. Computers & Mathematics with Applications 75:9, pages 3244-3248.
Crossref
Gautam Iyer & Daniel Spirn. (2017) A Model for Vortex Nucleation in the Ginzburg–Landau Equations. Journal of Nonlinear Science 27:6, pages 1933-1956.
Crossref
Hyungjin Huh. (2017) Global solutions to time-dependent Ginzburg–Landau–Chern–Simons equations. Journal of Mathematical Analysis and Applications 455:1, pages 714-726.
Crossref
Buyang Li & Chaoxia Yang. (2017) Global well-posedness of the time-dependent Ginzburg–Landau superconductivity model in curved polyhedra. Journal of Mathematical Analysis and Applications 451:1, pages 102-116.
Crossref
Min Xiao, Jishan Fan & Guoxi Ni. (2016) Weak solutions to the Ginzburg–Landau model in superconductivity with the Coulomb gauge. Mathematical Methods in the Applied Sciences 40:8, pages 2872-2877.
Crossref
Jishan Fan & Tohru Ozawa. 2017. New Trends in Analysis and Interdisciplinary Applications. New Trends in Analysis and Interdisciplinary Applications 301 306 .
J. Barba-Ortega, H.M. Carrillo & C.A. Sjogreen-Blanco. (2016) Unidimensional thermal gradients Tn in a nanoscopic superconductor. Physica C: Superconductivity and its Applications 525-526, pages 61-64.
Crossref
Zeling Ma, Xingzhe Wang & Youhe Zhou. (2016) Vortex and characteristics of prestrained type-II deformable superconductors under magnetic fields. Physica C: Superconductivity and its Applications 523, pages 10-18.
Crossref
Buyang Li & Zhimin Zhang. (2015) A new approach for numerical simulation of the time-dependent Ginzburg–Landau equations. Journal of Computational Physics 303, pages 238-250.
Crossref
Huadong Gao & Weiwei Sun. (2015) An efficient fully linearized semi-implicit Galerkin-mixed FEM for the dynamical Ginzburg–Landau equations of superconductivity. Journal of Computational Physics 294, pages 329-345.
Crossref
Jishan Fan, Hongjun Gao & Boling Guo. (2015) Uniqueness of Weak Solutions to the 3D Ginzburg–Landau Superconductivity Model. International Mathematics Research Notices 2015:5, pages 1239-1246.
Crossref
Bernard Helffer. 2015. Applied Mathematics in Tunisia. Applied Mathematics in Tunisia 21 51 .
Yaniv Almog & Bernard Helffer. (2014) Global Stability of the Normal State of Superconductors in the Presence of a Strong Electric Current. Communications in Mathematical Physics 330:3, pages 1021-1094.
Crossref
Chaoxia Yang. (2014) A linearized Crank–Nicolson–Galerkin FEM for the time‐dependent Ginzburg–Landau equations under the temporal gauge. Numerical Methods for Partial Differential Equations 30:4, pages 1279-1290.
Crossref
Jishan Fan & Tohru Ozawa. (2013) Global existence of strong solutions to a time‐dependent 3D Ginzburg‐Landau model for superconductivity with partial viscous terms. Mathematische Nachrichten 286:17-18, pages 1792-1796.
Crossref
Jishan Fan & Guoxi Ni. (2013) Uniform existence for a 3D time-dependent Ginzburg–Landau model in superconductivity. Applied Mathematics Letters 26:8, pages 814-819.
Crossref
Mariusz Gil & Stanisław Wędrychowicz. (2013) Schauder-Tychonoff Fixed-Point Theorem in Theory of Superconductivity. Journal of Function Spaces and Applications 2013, pages 1-12.
Crossref
Jishan Fan & Tohru Ozawa. (2011) Uniqueness of weak solutions to the Ginzburg-Landau model for superconductivity. Zeitschrift für angewandte Mathematik und Physik 63:3, pages 453-459.
Crossref
Yanzhi Zhang, Janet Peterson & Max Gunzburger. (2011) Maximizing critical currents in superconductors by optimization of normal inclusion properties. Physica D: Nonlinear Phenomena 240:21, pages 1701-1713.
Crossref
Tingchun Wang & Boling Guo. (2011) Analysis of some finite difference schemes for two-dimensional Ginzburg-Landau equation. Numerical Methods for Partial Differential Equations 27:5, pages 1340-1363.
Crossref
Alessia Berti, Valeria Berti & Ivana Bochicchio. (2011) Global and exponential attractors for a Ginzburg-Landau model of superfluidity. Discrete & Continuous Dynamical Systems - S 4:2, pages 247-271.
Crossref
Ian Tice. (2010) Ginzburg‐Landau vortex dynamics driven by an applied boundary current. Communications on Pure and Applied Mathematics 63:12, pages 1622-1676.
Crossref
Jishan Fan & Hongjun Gao. (2010) Uniqueness of weak solutions in critical space of the 3‐D time‐dependent Ginzburg‐Landau equations for superconductivity. Mathematische Nachrichten 283:8, pages 1134-1143.
Crossref
Qiang Du, Juncheng Wei & Chunyi Zhao. (2010) Vortex Solutions of the High-$\kappa$ High-Field Ginzburg–Landau Model with an Applied Current. SIAM Journal on Mathematical Analysis 42:6, pages 2368-2401.
Crossref
Maurizio Grasselli, Hao Wu & Songmu Zheng. (2009) Convergence to Equilibrium for Parabolic-Hyperbolic Time-Dependent Ginzburg–Landau–Maxwell Equations. SIAM Journal on Mathematical Analysis 40:5, pages 2007-2033.
Crossref
Qiang Du. (2008) Quantized vortices in BEC and superconductors. PAMM 7:1, pages 1023901-1023902.
Crossref
Jishan Fan & Hongjun Gao. (2007) Uniqueness of weak solutions of time-dependent 3-D Ginzburg-Landau model for superconductivity. Frontiers of Mathematics in China 2:2, pages 183-189.
Crossref
Valeria Berti & Mauro Fabrizio. (2007) Existence and uniqueness for a non-isothermal dynamical Ginzburg–Landau model of superconductivity. Mathematical and Computer Modelling 45:9-10, pages 1081-1095.
Crossref
Valeria Berti, Mauro Fabrizio & Claudio Giorgi. (2007) Gauge invariance and asymptotic behavior for the Ginzburg–Landau equations of superconductivity. Journal of Mathematical Analysis and Applications 329:1, pages 357-375.
Crossref
F. Zaouch. (2006) Stability of periodic solutions of the time-dependent Ginzburg-Landau equations. ZAMM 86:7, pages 521-538.
Crossref
Patricia Bauman, Hala Jadallah & Daniel Phillips. (2005) Classical solutions to the time-dependent Ginzburg–Landau equations for a bounded superconducting body in a vacuum. Journal of Mathematical Physics 46:9.
Crossref
Etienne Sandier & Sylvia Serfaty. (2004) Gamma‐convergence of gradient flows with applications to Ginzburg‐Landau. Communications on Pure and Applied Mathematics 57:12, pages 1627-1672.
Crossref
Jishang Fan & Song Jiang. (2003) Global existence of weak solutions of a time-dependent 3-D Ginzburg-Landau model for superconductivity. Applied Mathematics Letters 16:3, pages 435-440.
Crossref
Daniel Spirn. (2003) Vortex Motion Law for the Schrödinger--Ginzburg--Landau Equations. SIAM Journal on Mathematical Analysis 34:6, pages 1435-1476.
Crossref
Daniel Spirn. (2002) Vortex dynamics of the full time‐dependent Ginzburg‐Landau equations. Communications on Pure and Applied Mathematics 55:5, pages 537-581.
Crossref
Bixiang Wang. (2002) Uniqueness of Solutions for the Ginzburg–Landau Model of Superconductivity in Three Spatial Dimensions. Journal of Mathematical Analysis and Applications 266:1, pages 1-20.
Crossref
Sen-Zhong Huang & Peter Takáč. (2001) Convergence in gradient-like systems which are asymptotically autonomous and analytic. Nonlinear Analysis: Theory, Methods & Applications 46:5, pages 675-698.
Crossref
Hong Jun Gao & Ji Shan Fan. (2001) Local Dissipativity and Attractors for the Evolutionary Superconductivity Problem. Acta Mathematica Sinica, English Series 17:3, pages 381-390.
Crossref
Zhiming Chen & Shibin Dai. (2001) Adaptive Galerkin Methods with Error Control for a Dynamical Ginzburg--Landau Model in Superconductivity. SIAM Journal on Numerical Analysis 38:6, pages 1961-1985.
Crossref
Henrik Nordborg & Hans G. Kaper. 2001. Practical Asymptotics. Practical Asymptotics 221 240 .
Mei-Qin Zhan. (2000) Phase-lock equations and its connections to Ginzburg–Landau equations of superconductivity. Nonlinear Analysis: Theory, Methods & Applications 42:6, pages 1063-1075.
Crossref
Mei-Qin Zhan. (2000) Existence of Periodic Solutions for Ginzburg–Landau Equations of Superconductivity. Journal of Mathematical Analysis and Applications 249:2, pages 614-625.
Crossref
Erhan Coskun. (1999) Computational simulation of flux trapping and vortex pinning in Type-II superconductors. Applied Mathematics and Computation 106:1, pages 31-49.
Crossref
Anibal Rodriguez-Bernal, Bixiang Wang & Robert Willie. (1999) Asymptotic behaviour of time-dependent Ginzburg-Landau equations of superconductivity. Mathematical Methods in the Applied Sciences 22:18, pages 1647-1669.
Crossref
Bixiang Wang & Ning Su. (1999) Global weak solutions for the Ginzburg-Landau equations of superconductivity. Applied Mathematics Letters 12:3, pages 115-118.
Crossref
I A Shishmarev & M Tsutsumi. (1999) Large time asymptotic behaviour of solutions of the complex Landau-Ginzburg equation. Sbornik: Mathematics 190:4, pages 569-588.
Crossref
Bixiang Wang. (1999) Existence of Time Periodic Solutions for the Ginzburg-Landau Equations of Superconductivity. Journal of Mathematical Analysis and Applications 232:2, pages 394-412.
Crossref
Илья Андреевич Шишмарев, Il'ya Andreevich Shishmarev, М Цуцуми & M Tsutsumi. (1999) Асимптотика при больших временах решений комплексного уравнения Ландау - ГинзбургаLarge time asymptotic behaviour of solutions of the complex Landau - Ginzburg equation. Математический сборник Matematicheskii Sbornik 190:4, pages 95-114.
Crossref
Qiang Du. (1999) Studies of a Ginzburg--Landau Model for d -Wave Superconductors . SIAM Journal on Applied Mathematics 59:4, pages 1225-1250.
Crossref
Bixiang Wang & Ning Su. (2011) Existence of the solutions for the Ginzburg–Landau equations of superconductivity in three spatial dimensions. Proceedings of the Royal Society of Edinburgh: Section A Mathematics 129:3, pages 627-639.
Crossref
Mauro Fabrizio. (1999) Gauge invariance and time-dependence Ginzburg-Landau equations. ANNALI DELL UNIVERSITA DI FERRARA 45:1, pages 121-134.
Crossref
Mo Mu & Yunqing Huang. (1998) An Alternating Crank--Nicolson Method for Decoupling the Ginzburg--Landau Equations. SIAM Journal on Numerical Analysis 35:5, pages 1740-1761.
Crossref
Qiang Du. (1998) Discrete gauge invariant approximations of a time dependent Ginzburg-Landau model of superconductivity. Mathematics of Computation 67:223, pages 965-986.
Crossref
Lia Bronsard & Barbara Stoth. (1998) The Ginzburg-Landau equations of superconductivity and the one-phase Stefan problem. Annales de l'Institut Henri Poincaré C, Analyse non linéaire 15:3, pages 371-397.
Crossref
Jacqueline Fleckinger-Pellé, Hans G. Kaper & Peter Takáč. (1998) Dynamics of the Ginzburg-Landau equations of superconductivity. Nonlinear Analysis: Theory, Methods & Applications 32:5, pages 647-665.
Crossref
Fang-Hua Lin & Qiang Du. (1997) Ginzburg--Landau Vortices: Dynamics, Pinning, and Hysteresis. SIAM Journal on Mathematical Analysis 28:6, pages 1265-1293.
Crossref
Jennifer Deang, Qiang Du, Max Gunzburger & Janet Peterson. (1997) Vortices in superconductors: modelling and computer simulations. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 355:1731, pages 1957-1968.
Crossref
Erhan Coskun & Man Kam Kwong. (1997) Simulating vortex motion in superconducting films with the time-dependent Ginzburg - Landau equations. Nonlinearity 10:3, pages 579-593.
Crossref
Boling Guo & Guangwei Yuan. (2011) Cauchy problem for the Ginzburg-Landau equation for the superconductivity model. Proceedings of the Royal Society of Edinburgh: Section A Mathematics 127:6, pages 1181-1192.
Crossref
Qiang Du & Paul Gray. (1996) High-Kappa Limits of the Time-Dependent Ginzburg–Landau Model. SIAM Journal on Applied Mathematics 56:4, pages 1060-1093.
Crossref
Qi Tang & S. Wang. (1995) Time dependent Ginzburg-Landau equations of superconductivity. Physica D: Nonlinear Phenomena 88:3-4, pages 139-166.
Crossref
Q. Du. (1994) Finite element methods for the time-dependent Ginzburg-Landau model of superconductivity. Computers & Mathematics with Applications 27:12, pages 119-133.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.