195
Views
30
CrossRef citations to date
0
Altmetric
Original Articles

THE HEAT FLUX METHOD FOR PRODUCING BURNER STABILIZED ADIABATIC FLAMES: AN EVALUATION WITH CARS THERMOMETRY

, , , , , & show all
Pages 69-87 | Published online: 27 Apr 2007

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (4)

Vladimir A. Alekseev, Jenny D. Naucler, Moah Christensen, Elna J. K. Nilsson, Evgeniy N. Volkov, L. Philipus H. de Goey & Alexander A. Konnov. (2016) Experimental Uncertainties of the Heat Flux Method for Measuring Burning Velocities. Combustion Science and Technology 188:6, pages 853-894.
Read now
K.J. BOSSCHAART & L.P. H. GOEY. (2004) EXTENSION OF THE HEAT FLUX METHOD TO SUBATMOSPHERIC PRESSURES. Combustion Science and Technology 176:9, pages 1537-1564.
Read now
I.V. DYAKOV, A. A. KONNOV, J. DE RUYCK, K. J. BOSSCHAART, E. C. M. BROCK & L. P. H. DE GOEY. (2001) MEASUREMENT OF ADIABATIC BURNING VELOCITY IN METHANE-OXYGEN-NITROGEN MIXTURES. Combustion Science and Technology 172:1, pages 81-96.
Read now
A. A. KONNOV, I. V. DYAKOV & J. DE RUYCK. (2001) PROBE SAMPLING MEASUREMENTS AND MODELING OF NITRIC OXIDE FORMATION IN METHANE-AIR FLAMES. Combustion Science and Technology 169:1, pages 127-153.
Read now

Articles from other publishers (26)

Johannes Lill, Kevin Dieter, Konrad Koschnick, Andreas Dreizler, Gaetano Magnotti & Dirk Geyer. (2023) Measurement and simulation of temperature-dependent spontaneous Raman scattering of O2 including P and R branches. Journal of Quantitative Spectroscopy and Radiative Transfer 297, pages 108479.
Crossref
Vinod Kumar Yadav. (2023) Three-Dimensional Numerical Simulations to Extend the Measurement Range of Laminar Burning Velocity of Heat Flux Burners. Flow, Turbulence and Combustion 110:3, pages 707-733.
Crossref
Yalin Wang, Yu Wang, Xueqian Zhang, Guoping Zhou, Beibei Yan & Rob J. M. Bastiaans. (2022) Experimental and Numerical Study of the Laminar Burning Velocity and Pollutant Emissions of the Mixture Gas of Methane and Carbon Dioxide. International Journal of Environmental Research and Public Health 19:4, pages 2078.
Crossref
M.M. Sentko, S. Schulz, B. Stelzner, C. Anderlohr, M. Vicari & D. Trimis. (2021) Experimental investigation of the pressure influence on flame structure of fuel-rich oxy-fuel methane flames for synthesis gas production. Fuel 286, pages 119377.
Crossref
Xinlu Han, Marco Lubrano Lavadera, Christian Brackmann, Zhihua Wang, Yong He & Alexander A. Konnov. (2021) Experimental and kinetic modeling study of NO formation in premixed CH4+O2+N2 flames. Combustion and Flame 223, pages 349-360.
Crossref
Xin Kang, Youcheng Deng, Jianyong Wang & Aiwu Fan. (2020) A Versatile Numerical Tool for Simulating Combustion Features at Small-Scales. Journal of Thermal Science 30:1, pages 343-361.
Crossref
Shixing Wang, Zhihua Wang, Ayman M. Elbaz, Xinlu Han, Yong He, Mário Costa, Alexander A. Konnov & William L. Roberts. (2020) Experimental study and kinetic analysis of the laminar burning velocity of NH3/syngas/air, NH3/CO/air and NH3/H2/air premixed flames at elevated pressures. Combustion and Flame 221, pages 270-287.
Crossref
Matthias Martin Sentko, Sebastian Schulz, Björn Stelzner, Christopher Anderlohr, Maximilian Vicari & Dimosthenis Trimis. (2020) Determination of temperature and water-concentration in fuel-rich oxy-fuel methane flames applying TDLAS. Combustion and Flame 214, pages 336-345.
Crossref
Shixing Wang, Zhihua Wang, Yong He, Xinlu Han, Zhiwei Sun, Yanqun Zhu & Mario Costa. (2020) Laminar burning velocities of CH4/O2/N2 and oxygen-enriched CH4/O2/CO2 flames at elevated pressures measured using the heat flux method. Fuel 259, pages 116152.
Crossref
Alexander A. Konnov, Akram Mohammad, Velamati Ratna Kishore, Nam Il Kim, Chockalingam Prathap & Sudarshan Kumar. (2018) A comprehensive review of measurements and data analysis of laminar burning velocities for various fuel+air mixtures. Progress in Energy and Combustion Science 68, pages 197-267.
Crossref
M. F. Campbell, P. E. Schrader, A. L. Catalano, K. O. Johansson, G. A. Bohlin, N. K. Richards-Henderson, C. J. Kliewer & H. A. Michelsen. (2017) A small porous-plug burner for studies of combustion chemistry and soot formation. Review of Scientific Instruments 88:12.
Crossref
X. Kang, R.J. Gollan, P.A. Jacobs & A. Veeraragavan. (2016) Suppression of instabilities in a premixed methane–air flame in a narrow channel via hydrogen/carbon monoxide addition. Combustion and Flame 173, pages 266-275.
Crossref
H.O.B. Nonaka & F.M. Pereira. (2016) Experimental and numerical study of CO2 content effects on the laminar burning velocity of biogas. Fuel 182, pages 382-390.
Crossref
Alexey Fomin, Tatiana Zavlev, Igor Rahinov, Vladimir A. Alekseev, Alexander A. Konnov, Valery M. Baev & Sergey Cheskis. (2015) Fiber Laser Intracavity Spectroscopy of hot water for temperature and concentration measurements. Applied Physics B 121:3, pages 345-351.
Crossref
Nicolas Bouvet, Fabien Halter, Christian Chauveau & Youngbin Yoon. (2013) On the effective Lewis number formulations for lean hydrogen/hydrocarbon/air mixtures. International Journal of Hydrogen Energy 38:14, pages 5949-5960.
Crossref
A.A. Konnov, R. Riemeijer, V.N. Kornilov & L.P.H. de Goey. (2013) 2D effects in laminar premixed flames stabilized on a flat flame burner. Experimental Thermal and Fluid Science 47, pages 213-223.
Crossref
Ingmar Schoegl. (2012) Radiation effects on flame stabilization on flat flame burners. Combustion and Flame 159:9, pages 2817-2828.
Crossref
V. Ratna Kishore, M.R. Ravi & Anjan Ray. (2011) Adiabatic burning velocity and cellular flame characteristics of H2–CO–CO2–air mixtures. Combustion and Flame 158:11, pages 2149-2164.
Crossref
Mark Aurel Gregor & Andreas Dreizler. (2009) A quasi-adiabatic laminar flat flame burner for high temperature calibration. Measurement Science and Technology 20:6, pages 065402.
Crossref
V. Ratna Kishore, Nipun Duhan, M.R. Ravi & Anjan Ray. (2008) Measurement of adiabatic burning velocity in natural gas-like mixtures. Experimental Thermal and Fluid Science 33:1, pages 10-16.
Crossref
I. V. Rybitskaya, A. G. Shmakov, V. M. Shvartsberg & O. P. Korobeinichev. (2008) Effect of the equivalence ratio on the effectiveness of inhibition of laminar premixed hydrogen-air and hydrocarbon-air flames by trimethylphosphate. Combustion, Explosion, and Shock Waves 44:2, pages 133-140.
Crossref
I. V. Rybitskaya, A. G. Shmakov & O. P. Korobeinichev. (2007) Propagation velocity of hydrocarbon-air flames containing organophosphorus compounds at atmospheric pressure. Combustion, Explosion, and Shock Waves 43:3, pages 253-257.
Crossref
Igor V. Dyakov, Jacques De Ruyck & Alexander A. Konnov. (2007) Probe sampling measurements and modeling of nitric oxide formation in ethane+air flames. Fuel 86:1-2, pages 98-105.
Crossref
Eric H. van Veen & Dirk Roekaerts. (2005) Thermometry for turbulent flames by coherent anti-Stokes Raman spectroscopy with simultaneous referencing to the modeless excitation profile. Applied Optics 44:32, pages 6995.
Crossref
F. Halter, C. Chauveau, N. Djebaïli-Chaumeix & I. Gökalp. (2005) Characterization of the effects of pressure and hydrogen concentration on laminar burning velocities of methane–hydrogen–air mixtures. Proceedings of the Combustion Institute 30:1, pages 201-208.
Crossref
K.J. Bosschaart & L.P.H. de Goey. (2004) The laminar burning velocity of flames propagating in mixtures of hydrocarbons and air measured with the heat flux method. Combustion and Flame 136:3, pages 261-269.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.