154
Views
27
CrossRef citations to date
0
Altmetric
Original Articles

EVALUATION OF REDUCED MECHANISM FOR MODELING COMBUSTION OF PYROLYSIS GAS IN WILDLAND FIRE

&
Pages 39-70 | Received 01 May 2001, Accepted 09 May 2001, Published online: 03 Apr 2007

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (6)

Peyman Rahimi Borujerdi, Babak Shotorban, Shankar Mahalingam & David R. Weise. (2022) Influence of Pyrolysis Gas Composition and Reaction Kinetics on Leaf-Scale Fires. Combustion Science and Technology 0:0, pages 1-24.
Read now
Yaosong Huang, Zhen Lu & Lili Zheng. (2018) Study of SiCl4/H2/O2 chemical kinetics and its application to fused silica glass synthesis. Combustion Science and Technology 190:10, pages 1861-1885.
Read now
SelinaC. Ferguson, Ambarish Dahale, Babak Shotorban, Shankar Mahalingam & DavidR. Weise. (2013) The Role of Moisture on Combustion of Pyrolysis Gases in Wildland Fires. Combustion Science and Technology 185:3, pages 435-453.
Read now
Md. Saiful Alam, Agung Tri Wijayanta, Koichi Nakaso, Jun Fukai, Koyo Norinaga & Jun-ichiro Hayashi. (2010) A reduced mechanism for primary reactions of coal volatiles in a plug flow reactor. Combustion Theory and Modelling 14:6, pages 841-853.
Read now
Virginie Tihay, Albert Simeoni, Paul-Antoine Santoni, Véronique Bertin, Laurence Bonneau, Jean-Pierre Garo & Jean-Pierre Vantelon. (2008) On the Interest of Studying Degradation Gases for Forest Fuel Combustion Modeling. Combustion Science and Technology 180:9, pages 1637-1658.
Read now
Watit Pakdee & Shankar Mahalingam. (2003) An accurate method to implement boundary conditions for reacting flows based on characteristic wave analysis. Combustion Theory and Modelling 7:4, pages 705-729.
Read now

Articles from other publishers (21)

David R. Weise, Timothy J. Johnson, Tanya L. Myers, Wei Min Hao, Stephen Baker, Javier Palarea-Albaladejo, Nicole K. Scharko, Ashley M. Bradley, Catherine A. Banach & Russell G. Tonkyn. (2022) Comparing two methods to measure oxidative pyrolysis gases in a wind tunnel and in prescribed burns. International Journal of Wildland Fire 32:1, pages 56-77.
Crossref
Yingying Sun, Beibei Dong, Liang Wang, Hailong Li & Eva Thorin. (2022) Technology selection for capturing CO2 from wood pyrolysis. Energy Conversion and Management 266, pages 115835.
Crossref
David R. Weise, Wei Min Hao, Stephen Baker, Marko Princevac, Amir-Hessam Aminfar, Javier Palarea-Albaladejo, Roger D. Ottmar, Andrew T. Hudak, Joseph Restaino & Joseph J. O’Brien. (2022) Comparison of fire-produced gases from wind tunnel and small field experimental burns. International Journal of Wildland Fire 31:4, pages 409-434.
Crossref
Catherine A. Banach, Ashley M. Bradley, Russell G. Tonkyn, Olivia N. Williams, Joey Chong, David R. Weise, Tanya L. Myers & Timothy J. Johnson. (2021) Dynamic infrared gas analysis from longleaf pine fuel beds burned in a wind tunnel: observation of phenol in pyrolysis and combustion phases. Atmospheric Measurement Techniques 14:3, pages 2359-2376.
Crossref
Michele Mangiameli, Giuseppe Mussumeci & Annalisa Cappello. (2021) Forest Fire Spreading Using Free and Open-Source GIS Technologies. Geomatics 1:1, pages 50-64.
Crossref
Satyajeet Padhi, Babak Shotorban & Shankar Mahalingam. (2017) A computational study of the interactions of three adjacent burning shrubs subjected to wind. Fire Safety Journal 91, pages 749-757.
Crossref
Robert E. KeaneRobert E. Keane. 2015. Wildland Fuel Fundamentals and Applications. Wildland Fuel Fundamentals and Applications 15 37 .
W. K. Chow & Q. Liu. (2012) A Brief Review on Flame Spread Over Lignocellulosic Materials. Journal of Applied Fire Science 22:4, pages 471-486.
Crossref
F. Justino, W.R. Peltier & H.A. Barbosa. (2010) Atmospheric susceptibility to wildfire occurrence during the Last Glacial Maximum and mid-Holocene. Palaeogeography, Palaeoclimatology, Palaeoecology 295:1-2, pages 76-88.
Crossref
F. Nmira, J.L. Consalvi, P. Boulet & B. Porterie. (2010) Numerical study of wind effects on the characteristics of flames from non-propagating vegetation fires. Fire Safety Journal 45:2, pages 129-141.
Crossref
Andrew L. Sullivan. (2009) Wildland surface fire spread modelling, 1990 - 2007. 1: Physical and quasi-physical models. International Journal of Wildland Fire 18:4, pages 349.
Crossref
Jan Mandel, Lynn S. Bennethum, Jonathan D. Beezley, Janice L. Coen, Craig C. Douglas, Minjeong Kim & Anthony Vodacek. (2008) A wildland fire model with data assimilation. Mathematics and Computers in Simulation 79:3, pages 584-606.
Crossref
Valérie Leroy, Eric Leoni & Paul-Antoine Santoni. (2008) Reduced mechanism for the combustion of evolved gases in forest fires. Combustion and Flame 154:3, pages 410-433.
Crossref
V. Tihay, A. Simeoni & P. Santoni. (2008) Testing of different skeletal and global mechanisms for modeling combustion of degradation gases involved in wildland fire. Fire Safety Science 9, pages 1129-1140.
Crossref
Dong Ho Lee, Haiping Yang, Rong Yan & David Tee Liang. (2007) Prediction of gaseous products from biomass pyrolysis through combined kinetic and thermodynamic simulations. Fuel 86:3, pages 410-417.
Crossref
Xiangyang Zhou, Shankar Mahalingam & David Weise. (2007) Experimental study and large eddy simulation of effect of terrain slope on marginal burning in shrub fuel beds. Proceedings of the Combustion Institute 31:2, pages 2547-2555.
Crossref
Virginie Tihay, Albert Simeoni, Paul-Antoine Santoni & Lucile Rossi. (2006) Computational and experimental study of laminar flames from forest fuels. Computational and experimental study of laminar flames from forest fuels.
Xiangyang Zhou, Watit Pakdee & Shankar Mahalingam. (2004) Assessment of a flame surface density-based subgrid turbulent combustion model for nonpremixed flames of wood pyrolysis gas. Physics of Fluids 16:10, pages 3795-3807.
Crossref
Xiangyang Zhou & Shankar Mahalingam. (2003) A suitable mixture fraction for diffusion flames of wood pyrolysis gas. Combustion and Flame 133:1-2, pages 197-199.
Crossref
Xiangyang Zhou, W. Pakdee & Shankar Mahalingam. (2003) Large Eddy Simulation of Turbulent Nonpremixed Flame of Wood Pyrolysis Gas. Large Eddy Simulation of Turbulent Nonpremixed Flame of Wood Pyrolysis Gas.
Xiangyang Zhou & Shankar Mahalingam. (2002) A flame surface density based model for large eddy simulation of turbulent nonpremixed combustion. Physics of Fluids 14:11, pages L77-L80.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.