390
Views
52
CrossRef citations to date
0
Altmetric
Original Articles

SHOCK-TUBE STUDY OF THE IGNITION OF PROPANE AT INTERMEDIATE TEMPERATURES AND HIGH PRESSURES

, &
Pages 1627-1637 | Accepted 01 Mar 2004, Published online: 11 Aug 2010

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (1)

EricL. Petersen. (2009) Interpreting Endwall and Sidewall Measurements in Shock-Tube Ignition Studies. Combustion Science and Technology 181:9, pages 1123-1144.
Read now

Articles from other publishers (51)

Tengda Song, Can Wang, Mingsheng Wen, Haifeng Liu & Mingfa Yao. (2024) Combustion mechanism study of ammonia/n-dodecane/n-heptane/EHN blended fuel. Applications in Energy and Combustion Science 17, pages 100241.
Crossref
В. В. Шумова, Д. Н. Поляков & Л. М. Василяк. (2023) Рекомбинационный механизм нагрева примесных микрочастиц в процессе инициирования низкотемпературного воспламенения. Химическая физика 42:8, pages 82-86.
Crossref
V. V. Shumova, D. N. Polyakov & L. M. Vasilyak. (2023) Recombination Mechanism of Heating of Admixture Microparticles in Initiation of Low-Temperature Ignition. Russian Journal of Physical Chemistry B 17:4, pages 986-989.
Crossref
Long Zhu, Qiang Xu, Cheng Xie, Bingzhi Liu, Hong Wang, Snehasish Panigrahy, Henry Curran & Zhandong Wang. (2023) Chemical insight into the ozone-assisted low-temperature oxidation of propane. Combustion and Flame 254, pages 112814.
Crossref
Muhammad Farhan. (2023) Comprehensive study of autoignition characteristics of propane. PeerJ Physical Chemistry 5, pages e29.
Crossref
Dan A. DelVescovo, Jiaqi Li, Derek A. Splitter, Flavio Dal Forno Chuahy & Peng Zhao. (2023) Genetic algorithm optimization of a chemical kinetic mechanism for propane at engine relevant conditions. Fuel 338, pages 127371.
Crossref
A.M. Tereza, P.V. Kozlov, G. Ya Gerasimov, V. Yu Levashov, I.E. Zabelinsky & N.G. Bykova. (2023) Shock-tube study of high-temperature ignition of propane-air mixtures at elevated pressures. Acta Astronautica 204, pages 705-710.
Crossref
V. A. Savelieva, A. M. Savel’ev & N. S. Titova. (2023) Kinetic Mechanism of Ignition of Propane–Butane Mixtures at Low and High Temperatures: Development and Application. Combustion, Explosion, and Shock Waves 59:1, pages 1-21.
Crossref
G. Sakthi Balan & S. Aravind Raj. (2023) A review on Shock tubes with multitudinous applications. International Journal of Impact Engineering 172, pages 104406.
Crossref
Long Zhu, Snehasish Panigrahy, Sarah N. Elliott, Stephen J. Klippenstein, Mohammadreza Baigmohammadi, A. Abd El-Sabor Mohamed, Joshua W. Hargis, Sulaiman Alturaifi, Olivier Mathieu, Eric L. Petersen, Karl Alexander Heufer, Ajoy Ramalingam, Zhandong Wang & Henry J. Curran. (2023) A wide range experimental study and further development of a kinetic model describing propane oxidation. Combustion and Flame 248, pages 112562.
Crossref
Sergio Martinez, Mohammadreza Baigmohammadi, Vaibhav Patel, Snehasish Panigrahy, Amrit B. Sahu, Shashank S. Nagaraja, Ajoy Ramalingam, A. Abd El-Sabor Mohamed, Kieran P. Somers, Karl A. Heufer, Andrzej Pekalski & Henry J. Curran. (2021) An experimental and kinetic modeling study of the ignition delay characteristics of binary blends of ethane/propane and ethylene/propane in multiple shock tubes and rapid compression machines over a wide range of temperature, pressure, equivalence ratio, and dilution. Combustion and Flame 228, pages 401-414.
Crossref
P. V. Kozlov, Yu. V. Akimov, G. Ya. Gerasimov & V. Yu. Levashov. (2022) Ignition of a Propane-Air Mixture for a Reflected Shock Wave at High Pressures. High Temperature 59:2-6, pages 240-244.
Crossref
Miles A. Burnett & Margaret S. Wooldridge. (2021) An experimental investigation of flame and autoignition behavior of propane. Combustion and Flame 224, pages 24-32.
Crossref
Wenxiang Xia, Chao Peng, Chun Zou, Yang Liu, Lixin Lu, Jianghui Luo, Qianjin Lin & Haiyang Shi. (2020) Shock tube and modeling study of ignition delay times of propane under O2/CO2/Ar atmosphere. Combustion and Flame 220, pages 34-48.
Crossref
Maysam Molana, Joshua Abraham Piehl & Omid Samimi-Abianeh. (2020) Rapid Compression Machine Ignition Delay Time Measurements under Near-Constant Pressure Conditions. Energy & Fuels 34:9, pages 11417-11428.
Crossref
Jie Liu, Ruiguang Yu & Biao Ma. (2020) Effect of Ozone Addition on the Cool Flame and Negative Temperature Coefficient Regions of Propane–Oxygen Mixtures. ACS Omega 5:27, pages 16448-16454.
Crossref
Richard B. Bramlette & Christopher D. Depcik. (2020) Review of propane-air chemical kinetic mechanisms for a unique jet propulsion application. Journal of the Energy Institute 93:3, pages 857-877.
Crossref
Pino Sabia & Mara de Joannon. (2020) Critical Issues of Chemical Kinetics in MILD Combustion. Frontiers in Mechanical Engineering 6.
Crossref
Ajoy Kumar Ramalingam, Martin Krieck, Stefan Pischinger & Karl Alexander Heufer. (2020) Understanding the Oxidation Behavior of Automotive Liquefied Petroleum Gas Fuels: Experimental and Kinetic Analyses. Energy & Fuels 34:2, pages 2323-2333.
Crossref
Ajoy Ramalingam, Yann Fenard & Alexander Heufer. (2020) Ignition delay time and species measurement in a rapid compression machine: A case study on high-pressure oxidation of propane. Combustion and Flame 211, pages 392-405.
Crossref
Guangying Yu, Hameed Metghalchi, Omid Askari & Ziyu Wang. (2019) Combustion Simulation of Propane/Oxygen (With Nitrogen/Argon) Mixtures Using Rate-Controlled Constrained-Equilibrium. Journal of Energy Resources Technology 141:2.
Crossref
Hamid Hashemi, Jakob M. Christensen, Lawrence B. Harding, Stephen J. Klippenstein & Peter Glarborg. (2019) High-pressure oxidation of propane. Proceedings of the Combustion Institute 37:1, pages 461-468.
Crossref
Elena Filimonova, Aleksey Bocharov & Valentin Bityurin. (2018) Influence of a non-equilibrium discharge impact on the low temperature combustion stage in the HCCI engine. Fuel 228, pages 309-322.
Crossref
S. Scott Goldsborough, Simone Hochgreb, Guillaume Vanhove, Margaret S. Wooldridge, Henry J. Curran & Chih-Jen Sung. (2017) Advances in rapid compression machine studies of low- and intermediate-temperature autoignition phenomena. Progress in Energy and Combustion Science 63, pages 1-78.
Crossref
Walter Leitner, Jürgen Klankermayer, Stefan Pischinger, Heinz Pitsch & Katharina Kohse‐Höinghaus. (2017) Advanced Biofuels and Beyond: Chemistry Solutions for Propulsion and Production. Angewandte Chemie International Edition 56:20, pages 5412-5452.
Crossref
Walter Leitner, Jürgen Klankermayer, Stefan Pischinger, Heinz Pitsch & Katharina Kohse‐Höinghaus. (2017) Synthese, motorische Verbrennung, Emissionen: Chemische Aspekte des Kraftstoffdesigns. Angewandte Chemie 129:20, pages 5500-5544.
Crossref
Xue Jiang, Fuquan Deng, Feiyu Yang, Yingjia Zhang & Zuohua Huang. (2017) High temperature ignition delay time of DME/n-pentane mixture under fuel lean condition. Fuel 191, pages 77-86.
Crossref
V. A. Troutman, C. L. Strand, M. F. Campbell, A. M. Tulgestke, V. A. Miller, D. F. Davidson & R. K. Hanson. (2016) High-speed OH* chemiluminescence imaging of ignition through a shock tube end-wall. Applied Physics B 122:3.
Crossref
David F. Davidson, Andrew Tulgestke & Ronald K. Hanson. (2016) High-Speed Imaging of Ignition behind Reflected Shock Waves. High-Speed Imaging of Ignition behind Reflected Shock Waves.
Youngchul Ra & Rolf D. Reitz. (2015) A combustion model for multi-component fuels using a physical surrogate group chemistry representation (PSGCR). Combustion and Flame 162:10, pages 3456-3481.
Crossref
P. Sabia, M. de Joannon, G. Sorrentino, P. Giudicianni & R. Ragucci. (2015) Effects of mixture composition, dilution level and pressure on auto-ignition delay times of propane mixtures. Chemical Engineering Journal 277, pages 324-333.
Crossref
G. L. Agafonov & A. M. Tereza. (2015) Autoignition of propane behind shock waves. Russian Journal of Physical Chemistry B 9:1, pages 92-103.
Crossref
Pino Sabia, Mariarosaria de Joannon, Marco Lubrano Lavadera, Paola Giudicianni & Raffaele Ragucci. (2014) Autoignition delay times of propane mixtures under MILD conditions at atmospheric pressure. Combustion and Flame 161:12, pages 3022-3030.
Crossref
Chih-Jen Sung & Henry J. Curran. (2014) Using rapid compression machines for chemical kinetics studies. Progress in Energy and Combustion Science 44, pages 1-18.
Crossref
Ponnuthurai Gokulakrishnan, Casey C. Fuller, Michael S. Klassen, Richard G. Joklik, Yash N. Kochar, Sarah N. Vaden, Timothy C. Lieuwen & Jerry M. Seitzman. (2014) Experiments and modeling of propane combustion with vitiation. Combustion and Flame 161:8, pages 2038-2053.
Crossref
Yangye Zhu, David Frank Davidson & Ronald K. Hanson. (2014) 1-Butanol ignition delay times at low temperatures: An application of the constrained-reaction-volume strategy. Combustion and Flame 161:3, pages 634-643.
Crossref
Alessandro Schönborn, Parisa Sayad, Alexander A. Konnov & Jens Klingmann. (2013) Visualisation of propane autoignition in a turbulent flow reactor using OH* chemiluminescence imaging. Combustion and Flame 160:6, pages 1033-1043.
Crossref
A. Vandersickel, M. Hartmann, K. Vogel, Y.M. Wright, M. Fikri, R. Starke, C. Schulz & K. Boulouchos. (2012) The autoignition of practical fuels at HCCI conditions: High-pressure shock tube experiments and phenomenological modeling. Fuel 93, pages 492-501.
Crossref
Changyoul Lee, Stijn Vranckx, Karl A. Heufer, Sergey V. Khomik, Yasar Uygun, Herbert Olivier & Ravi X. Fernandez. (2012) On the Chemical Kinetics of Ethanol Oxidation: Shock Tube, Rapid Compression Machine and Detailed Modeling Study. Zeitschrift für Physikalische Chemie 226:1, pages 1-28.
Crossref
K.-Y. Lam, Z. Hong, D.F. Davidson & R.K. Hanson. (2011) Shock tube ignition delay time measurements in propane/O2/argon mixtures at near-constant-volume conditions. Proceedings of the Combustion Institute 33:1, pages 251-258.
Crossref
M. Hartmann, I. Gushterova, M. Fikri, C. Schulz, R. Schießl & U. Maas. (2011) Auto-ignition of toluene-doped n-heptane and iso-octane/air mixtures: High-pressure shock-tube experiments and kinetics modeling. Combustion and Flame 158:1, pages 172-178.
Crossref
M. M. Holton, P. Gokulakrishnan, M. S. Klassen, R. J. Roby & G. S. Jackson. (2010) Autoignition Delay Time Measurements of Methane, Ethane, and Propane Pure Fuels and Methane-Based Fuel Blends. Journal of Engineering for Gas Turbines and Power 132:9.
Crossref
K. A. Heufer & H. Olivier. (2010) Determination of ignition delay times of different hydrocarbons in a new high pressure shock tube. Shock Waves 20:4, pages 307-316.
Crossref
D. Healy, D. M. Kalitan, C. J. Aul, E. L. Petersen, G. Bourque & H. J. Curran. (2010) Oxidation of C1−C5 Alkane Quinternary Natural Gas Mixtures at High Pressures. Energy & Fuels 24:3, pages 1521-1528.
Crossref
A.A. Konnov. (2009) Implementation of the NCN pathway of prompt-NO formation in the detailed reaction mechanism. Combustion and Flame 156:11, pages 2093-2105.
Crossref
David F. Davidson & R. K. Hanson. (2009) Recent advances in shock tube/laser diagnostic methods for improved chemical kinetics measurements. Shock Waves 19:4, pages 271-283.
Crossref
Subith S. Vasu, David F. Davidson, Zekai Hong & Ronald K. Hanson. (2008) Shock Tube Study of Methylcyclohexane Ignition over a Wide Range of Pressure and Temperature. Energy & Fuels 23:1, pages 175-185.
Crossref
J. de Vries, C. Aul, A. Barrett, D. Lambe & E. Petersen. 2009. Shock Waves. Shock Waves 171 176 .
E.L. Petersen, M. Lamnaouer, J. de Vries, H. Curran, J. Simmie, M. Fikri, C. Schulz & G. Bourque. 2009. Shock Waves. Shock Waves 739 744 .
S.M. Gallagher, H.J. Curran, W.K. Metcalfe, D. Healy, J.M. Simmie & G. Bourque. (2008) A rapid compression machine study of the oxidation of propane in the negative temperature coefficient regime. Combustion and Flame 153:1-2, pages 316-333.
Crossref
J. de Vries & E.L. Petersen. (2007) Autoignition of methane-based fuel blends under gas turbine conditions. Proceedings of the Combustion Institute 31:2, pages 3163-3171.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.