2,495
Views
97
CrossRef citations to date
0
Altmetric
Original Articles

Comparison of Different Global Reaction Mechanisms for MILD Combustion of Natural Gas

, &
Pages 565-592 | Received 05 May 2007, Accepted 01 Nov 2007, Published online: 14 Feb 2008

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (11)

Yucheng Kuang, Boshu He, Chaojun Wang, Wenxiao Tong & Di He. (2024) Numerical Research for MILD Burners with Different configurations. Combustion Science and Technology 196:3, pages 421-438.
Read now
Kareem I. Khidr, Yehia A. Eldrainy & Mohamed M. El-Kassaby. (2021) Investigating the Potential of Different Modeling Setups in Simulating a Flameless Furnace Using Global and Detailed Kinetic Mechanisms. Combustion Science and Technology 193:5, pages 727-761.
Read now
Camilo Lezcano, Julián Obando & Andrés Amell. (2017) Numerical Simulation of a Flameless Combustion Furnace with Mixtures of Methane and a Sub-Bituminous Pulverized Coal. Combustion Science and Technology 189:9, pages 1591-1604.
Read now
Jeffrey William Labahn & Cecile Devaud. (2017) Species and temperature predictions in a semi-industrial MILD furnace using a non-adiabatic conditional source-term estimation formulation. Combustion Theory and Modelling 21:3, pages 466-486.
Read now
Seyed Ehsan Hosseini & Mazlan Abdul Wahid. (2015) Effects of Burner Configuration on the Characteristics of Biogas Flameless Combustion. Combustion Science and Technology 187:8, pages 1240-1262.
Read now
V. Mahendra Reddy, Darshan Trivedi, Darshan Sawant & Sudarshan Kumar. (2015) Investigations on Emission Characteristics of Liquid Fuels in a Swirl Combustor. Combustion Science and Technology 187:3, pages 469-488.
Read now
A. Rebola, P.J. Coelho & M. Costa. (2013) Assessment of the Performance of Several Turbulence and Combustion Models in the Numerical Simulation of a Flameless Combustor. Combustion Science and Technology 185:4, pages 600-626.
Read now
Y. Pérez-Ramirez, P. Santoni, N. Darabiha, V. Leroy-Cancellieri & E. Leoni. (2012) A Global Kinetic Model for the Combustion of the Evolved Gases in Wildland Fires. Combustion Science and Technology 184:9, pages 1380-1394.
Read now
Lin Wang, Zhaohui Liu, Sheng Chen & Chuguang Zheng. (2012) Comparison of Different Global Combustion Mechanisms Under Hot and Diluted Oxidation Conditions. Combustion Science and Technology 184:2, pages 259-276.
Read now
V. Mahendra Reddy, Darshan Trivedi & Sudarshan Kumar. (2012) Experimental Investigations on Lifted Spray Flames for a Range of Coflow Conditions. Combustion Science and Technology 184:1, pages 44-63.
Read now
Jingwen Yan, Junjie Li, Donghao Jin, Xin Liu, Wenzhen Zhang & Heyang Wang. Numerical investigation of boiler waterwall corrosion by integrated tube temperature prediction and sulfur evolution model. Numerical Heat Transfer, Part A: Applications 0:0, pages 1-20.
Read now

Articles from other publishers (86)

Namsu Kim, Young Tae Guahk & Chang-bog Ko. (2024) Numerical simulation of an industrial radiant tube burner using OpenFOAM. Fuel Communications 19, pages 100119.
Crossref
Yu Zhang & Shuman Wang. (2024) Numerical simulation of flue gas recirculation in a lime rotary kiln. Energy 297, pages 131098.
Crossref
Haiyu Huang, Xufeng Xue, Yi Liu, Jun Zhao, Mao Tian & Yanqing Niu. (2024) Numerical Studies of a Water-cooled Premixed Burner for Low NOx Combustion of Natural Gas. Journal of the Energy Institute, pages 101647.
Crossref
Zhenghong Zhao, Zewu Zhang, Xiaojian Zha, Ge Gao, Fan Wu, Xiaoshan Li, Cong Luo & Liqi Zhang. (2024) Reaction behaviors in pulverized coal MILD-oxy combustion affected by physical and chemical effects of diluents. Fuel 355, pages 129351.
Crossref
Naveen Kumar & Ankit Bansal. 2024. Proceedings of the 1st International Conference on Fluid, Thermal and Energy Systems. Proceedings of the 1st International Conference on Fluid, Thermal and Energy Systems 589 601 .
Hyung-Tae Kim, Ji-Hwan Lee, Jin-Wook Lee, Byoung-Hwa Lee & Chung-Hwan Jeon. (2023) Effect of Operating Conditions on the Gasification of Pet-Coke Water Slurry in an Entrained-Flow Gasifier Simulation. ACS Omega 8:48, pages 45933-45941.
Crossref
Seong-Ju Kim, Sung-Jin Park, Sung-Ho Jo, Hookyung Lee, Sang-Jun Yoon, Ji-Hong Moon, Ho-Won Ra, Sung-Min Yoon, Jae-Goo Lee & Tae-Young Mun. (2023) Effects of ammonia co-firing ratios and injection positions in the coal–ammonia co-firing process in a circulating fluidized bed combustion test rig. Energy 282, pages 128953.
Crossref
Hun Young Kim & Nam Il Kim. (2023) Optimized global reaction mechanisms for H2, CO, CH4, and their mixtures. International Journal of Hydrogen Energy 48:62, pages 24101-24112.
Crossref
Wenbin Jiang, Ruiqi Zhu & Donghoon Shin. (2023) Heat transfer characteristics of tubular heat exchanger using reverse air injection flameless combustion. Applied Thermal Engineering 230, pages 120713.
Crossref
Baiwei Lei, Qinan Wei, Renhua Pang, Jianjun Xiao, Mike Kuznetsov & Thomas Jordan. (2023) The effect of hydrogen addition on methane/air explosion characteristics in a 20-L spherical device. Fuel 338, pages 127351.
Crossref
H. Mohsenian & N. Ghiasi. (2022) Modeling and simulation of an industrial combustion reactor using computational fluid dynamics. International Journal of Environmental Science and Technology 20:2, pages 1247-1258.
Crossref
Abdelgader A. S. Gheidan, Mazlan Abdul Wahid, Lei Li, Amri M. A. Wahid & Anthony C. Opia. Numerical investigation on air-fuel configurations on the emission features in a vortex flameless combustion at various thermal intensity. Numerical investigation on air-fuel configurations on the emission features in a vortex flameless combustion at various thermal intensity.
Alain Islas, Andrés Rodríguez Fernández, Covadonga Betegón, Emilio Martínez-Pañeda & Adrián Pandal. (2022) Computational assessment of biomass dust explosions in the 20L sphere. Process Safety and Environmental Protection 165, pages 791-814.
Crossref
Di He, Yusong Yu, Yucheng Kuang & Chaojun Wang. (2022) Analysis of EDC constants for predictions of methane MILD combustion. Fuel 324, pages 124542.
Crossref
Yefferson López, Julian Obando, Camilo Echeverri-Uribe & Andrés A. Amell. (2022) Experimental and numerical study of the effect of water injection into the reaction zone of a flameless combustion furnace. Applied Thermal Engineering 213, pages 118634.
Crossref
Liutao Sun, Rui Sun, Yonghong Yan, Zewu Zhang, Wei Ke & Jiangquan Wu. (2022) Bluff-body MILD combustion of large-proportion semicoke-blend under various secondary air velocities. Fuel 320, pages 123908.
Crossref
Tingyao Zhang, Zhongfa Hu & Yuegui Zhou. (2022) The determination method of the ignition modes of single coal particle with a transient coal ignition and combustion model. Combustion and Flame 241, pages 112092.
Crossref
Donghee Kim, Jinje Park, Kang Y. Huh & Youngjae Lee. (2021) Oxygen‐enriched flameless combustion of CH 4 / H 2 / CO mixtures . International Journal of Energy Research 46:4, pages 4320-4338.
Crossref
João Sousa Cardoso, Valter Silva, José Antonio Mayoral Chavando, Daniela Eusébio & Matthew J. Hall. (2022) Numerical modelling of the coal phase-out through ammonia and biomass co-firing in a pilot-scale fluidized bed reactor. Fuel Communications 10, pages 100055.
Crossref
João Sousa Cardoso, Valter Silva, Daniela Eusébio, Luís A.C. Tarelho, Matthew J. Hall & Alon Grinberg Dana. (2022) Numerical modelling of ammonia-coal co-firing in a pilot-scale fluidized bed reactor: Influence of ammonia addition for emissions control. Energy Conversion and Management 254, pages 115226.
Crossref
Mingyu Wang, Jing Zhao, Feihong Guo, Lingli Zhu, Dekui Shen & Xiaoxiang Jiang. (2022) Numerical simulation on the emission of NOx from the combustion of natural gas in the sidewall burner. Thermal Science 26:1 Part A, pages 247-258.
Crossref
N. Romero-Anton, K. Martin-Escudero, Mengmeng Ren & Z. Azkorra-Larrinaga. (2022) Consideration of the interactions between the reaction zones in the new extended Eddy dissipation concept model. Computers & Fluids 233, pages 105203.
Crossref
Ghobad Bagheri & Matteo Pelucchi. 2022. Fundamentals of Low Emission Flameless Combustion and Its Applications. Fundamentals of Low Emission Flameless Combustion and Its Applications 377 420 .
Yaxin Su & Bingtao Zhao. 2022. Fundamentals of Low Emission Flameless Combustion and Its Applications. Fundamentals of Low Emission Flameless Combustion and Its Applications 81 117 .
Kang-Min Kim, Gyu-Bo Kim, Byoung-Hwa Lee, Yoon-Ho Bae & Chung-Hwan Jeon. (2021) CFD Evaluation of Heat Transfer and NOx Emissions When Converting a Tangentially Fired Coal Boiler to Use Methane. Energies 15:1, pages 246.
Crossref
Jicang Si, Guochang Wang, Xiangtao Liu, Mengwei Wu & Jianchun Mi. (2021) A New Global Mechanism for MILD Combustion Using Artificial-Neural-Network-Based Optimization. Energy & Fuels 35:18, pages 14941-14953.
Crossref
Mengqian Xie, Fangqin Dai & Yaojie Tu. (2021) A numerical study of accelerated moderate or intense low-oxygen dilution (MILD) combustion stability for methane in a lab-scale furnace by off-stoichiometric combustion technology. Chinese Journal of Chemical Engineering 32, pages 108-118.
Crossref
Cristian C. Mejía, Alex M. García, Julián E. Obando & Andrés A. Amell. (2021) Numerical and Experimental Study of the Effect of Injected CO2 Flow on the Stability of Flameless Combustion. Journal of Thermal Science and Engineering Applications 13:1.
Crossref
Markus Mayrhofer, Michael Koller, Peter Seemann, Rene Prieler & Christoph Hochenauer. (2021) Evaluation of flamelet-based combustion models for the use in a flameless burner under different operating conditions. Applied Thermal Engineering 183, pages 116190.
Crossref
Fanzhi Jiang, Jianyi Kong & Degang Ouyang. (2020) Nonlinear Numerical Simulation of Service Behaviour of Regenerative Burner under Multiple Thermal Shocks. Journal of Physics: Conference Series 1637:1, pages 012129.
Crossref
Juwei Zhang, Takamasa Ito, Hiroki Ishii, Sakiko Ishihara & Toshiro Fujimori. (2020) Numerical investigation on ammonia co-firing in a pulverized coal combustion facility: Effect of ammonia co-firing ratio. Fuel 267, pages 117166.
Crossref
Jian Zhang, LiPo Wang & YuQing Guo. (2019) Non-premixed turbulent combustion modeling based on the filtered turbulent flamelet equation. Science China Physics, Mechanics & Astronomy 63:4.
Crossref
Jicang Si, Guochang Wang, Pengfei Li & Jianchun Mi. (2020) Optimization of the Global Reaction Mechanism for MILD Combustion of Methane Using Artificial Neural Network. Energy & Fuels 34:3, pages 3805-3815.
Crossref
Sebastian Kriebitzsch & Andreas Richter. (2020) LES simulation of char particle gasification at Reynolds numbers up to 1000. Combustion and Flame 211, pages 185-194.
Crossref
Zewu Zhang, Bowen Lu, Liqi Zhang, Xiaoshan Li, Cong Luo, Yongqing Xu, Zhenghong Zhao & Chuguang Zheng. (2019) Computational study on the effect of gasification reaction on pulverized coal MILD combustion diluted by N2 and CO2. Applied Thermal Engineering 158, pages 113806.
Crossref
G. Gargiulo, P.P. Ciottoli, E. Martelli, R. Malpica Galassi & M. Valorani. (2019) Numerical analysis of laser-pulse transient ignition of oxygen/methane mixtures in rocket-like combustion chamber. Acta Astronautica 159, pages 136-155.
Crossref
Zewu Zhang, Xiaoshan Li, Liqi Zhang, Cong Luo, Zhihui Mao, Yongqing Xu, Ji Liu, Gaocheng Liu & Chuguang Zheng. (2019) Numerical investigation of the effects of different injection parameters on Damköhler number in the natural gas MILD combustion. Fuel 237, pages 60-70.
Crossref
Javad Aminian, Chiara Galletti & Leonardo Tognotti. (2019) Impact of sub-grid scale models on resolving mixing and thermal shear layers in large eddy simulation of JHC flames. Applied Thermal Engineering 149, pages 1244-1254.
Crossref
Feifei Wang, Pengfei Li, Jianchun Mi & Jinbo Wang. (2018) A refined global reaction mechanism for modeling coal combustion under moderate or intense low-oxygen dilution condition. Energy 157, pages 764-777.
Crossref
X. Jiang, D. Mira & D.L. Cluff. (2018) The combustion mitigation of methane as a non-CO 2 greenhouse gas. Progress in Energy and Combustion Science 66, pages 176-199.
Crossref
Alireza Shakeri & Karim Mazaheri. (2018) Integrated Procedure, Using Differential Evolution Optimization of Rate Parameters, for Design of Small and Accurate Multistep Global Chemical Mechanisms. Industrial & Engineering Chemistry Research 57:10, pages 3530-3544.
Crossref
Fan Hu, Pengfei Li, Junjun Guo, Zhaohui Liu, Lin Wang, Jianchun Mi, Bassam Dally & Chuguang Zheng. (2018) Global reaction mechanisms for MILD oxy-combustion of methane. Energy 147, pages 839-857.
Crossref
Yun Zhang & Yinhe Liu. (2017) Numerical Simulation of Hydrogen Combustion: Global Reaction Model and Validation. Frontiers in Energy Research 5.
Crossref
S. N. Kokh, E. V. Sokol, A. A. Dekterev, K. A. Kokh, T. M. Rashidov, A. A. Tomilenko, T. A. Bul’bak, A. Khasaeva & A. Guseinov. (2017) The 2011 strong fire eruption of Shikhzarli mud volcano, Azerbaijan: a case study with implications for methane flux estimation. Environmental Earth Sciences 76:20.
Crossref
Yaojie Tu, Wenming Yang & Hao Liu. (2017) A Refined Global Reaction Mechanism for Gently Preheated MILD Combustion of Methane. Energy & Fuels 31:9, pages 10144-10157.
Crossref
Pranit Gaikwad, Hrishikesh Kulkarni & S. Sreedhara. (2017) Simplified numerical modelling of oxy-fuel combustion of pulverized coal in a swirl burner. Applied Thermal Engineering 124, pages 734-745.
Crossref
A. Chinnici, Z.F. Tian, J.H. Lim, G.J. Nathan & B.B. Dally. (2017) Comparison of system performance in a hybrid solar receiver combustor operating with MILD and conventional combustion. Part II: Effect of the combustion mode. Solar Energy 147, pages 479-488.
Crossref
Yaojie Tu, Kai Su, Hao Liu, Zean Wang, Yihao Xie, Chuguang Zheng & Weijie Li. (2017) MILD combustion of natural gas using low preheating temperature air in an industrial furnace. Fuel Processing Technology 156, pages 72-81.
Crossref
Yaming Liu, Sheng Chen, Shi Liu, Yongxin Feng, Kai Xu & Chuguang Zheng. (2016) Methane combustion in various regimes: First and second thermodynamic-law comparison between air-firing and oxyfuel condition. Energy 115, pages 26-37.
Crossref
Juwei Zhang, Takamasa Ito, Kazuhiro Watanabe, Toshiyuki Suda & Toshiro Fujimori. (2016) Investigation of Submodels in Computational Fluid Dynamics Simulations of a Large-Scale Pulverized-Coal-Fired Furnace: Significant Role of H 2 . Energy & Fuels 30:7, pages 6117-6122.
Crossref
Yinhe Liu, Yun Zhang, Xiaoqian Liu, Ziyu Liu & Defu Che. (2016) Experimental and numerical investigation on premixed H2/air combustion. International Journal of Hydrogen Energy 41:24, pages 10496-10506.
Crossref
M. Fischer & X. Jiang. (2016) A chemical kinetic modelling study of the combustion of CH4–CO–H2–CO2 fuel mixtures. Combustion and Flame 167, pages 274-293.
Crossref
J.W. Labahn & C.B. Devaud. (2016) Large Eddy Simulations (LES) including Conditional Source-term Estimation (CSE) applied to two Delft-Jet-in-Hot-Coflow (DJHC) flames. Combustion and Flame 164, pages 68-84.
Crossref
Svetlana Kokh, Artem Dekterev, Ella Sokol & Sergey Potapov. (2016) Numerical simulation of an oil–gas fire: A case study of a technological accident at Tengiz oilfield, Kazakhstan (June 1985–July 1986). Energy Exploration & Exploitation 34:1, pages 77-98.
Crossref
Bernhard Mayr, Rene Prieler, Martin Demuth, Michael Potesser & Christoph Hochenauer. (2015) CFD and experimental analysis of a 115kW natural gas fired lab-scale furnace under oxy-fuel and air–fuel conditions. Fuel 159, pages 864-875.
Crossref
Rene Prieler, Bernhard Mayr, Martin Demuth, Davor Spoljaric & Christoph Hochenauer. (2015) Application of the steady flamelet model on a lab-scale and an industrial furnace for different oxygen concentrations. Energy 91, pages 451-464.
Crossref
D.A. Granados, F. Chejne & J.M. Mejía. (2015) Oxy-fuel combustion as an alternative for increasing lime production in rotary kilns. Applied Energy 158, pages 107-117.
Crossref
Bernhard Mayr, Rene Prieler, Martin Demuth & Christoph Hochenauer. (2015) The usability and limits of the steady flamelet approach in oxy-fuel combustions. Energy 90, pages 1478-1489.
Crossref
M. Fischer & X. Jiang. (2015) An investigation of the chemical kinetics of biogas combustion. Fuel 150, pages 711-720.
Crossref
Jeongwon Lee, Sangtae Jeon & Yongmo Kim. (2015) Multi-environment probability density function approach for turbulent CH4/H2 flames under the MILD combustion condition. Combustion and Flame 162:4, pages 1464-1476.
Crossref
Rene Prieler, Martin Demuth, Davor Spoljaric & Christoph Hochenauer. (2015) Numerical investigation of the steady flamelet approach under different combustion environments. Fuel 140, pages 731-743.
Crossref
Junjun Guo, Zhaohui Liu, Peng Wang, Xiaohong Huang, Jing Li, Ping Xu & Chuguang Zheng. (2015) Numerical investigation on oxy-combustion characteristics of a 200MWe tangentially fired boiler. Fuel 140, pages 660-668.
Crossref
M. Fischer & X. Jiang. (2014) An assessment of chemical kinetics for bio-syngas combustion. Fuel 137, pages 293-305.
Crossref
Seyed Ehsan Hosseini & Mazlan Abdul Wahid. (2014) Investigation of bluff-body micro-flameless combustion. Energy Conversion and Management 88, pages 120-128.
Crossref
I. A. Zaev & I. V. Prokopovich. (2014) Global mechanism of methane autoignition: Approach and algorithm. Russian Journal of Physical Chemistry B 8:4, pages 467-474.
Crossref
Seyed Ehsan Hosseini, Ghobad Bagheri & Mazlan Abdul Wahid. (2014) Numerical investigation of biogas flameless combustion. Energy Conversion and Management 81, pages 41-50.
Crossref
Rene Prieler, Martin Demuth, Davor Spoljaric & Christoph Hochenauer. (2014) Evaluation of a steady flamelet approach for use in oxy-fuel combustion. Fuel 118, pages 55-68.
Crossref
Bjørn Lilleberg, Dominik Christ, Ivar S. Ertesvåg, Kjell Erik Rian & Reinhold Kneer. (2013) Numerical Simulation with an Extinction Database for Use with the Eddy Dissipation Concept for Turbulent Combustion. Flow, Turbulence and Combustion 91:2, pages 319-346.
Crossref
Fan Zhi Jiang, Jian Yi Kong & De Gang Ouyang. (2013) The Optimization of the Pass Structure of Double Regenerative Burner with the Numerical Simulation of Thermal Stress Field. Advanced Materials Research 721, pages 671-676.
Crossref
Fan Zhi Jiang, Jian Yi Kong & De Gang Ouyang. (2013) A Kind of Improved Pass Structure of Double Regenerative Burner with the Numerical Simulation of Thermal Stress Field. Applied Mechanics and Materials 318, pages 162-166.
Crossref
Ajay Pratap Singh & Michael Nikolaou. (2013) Control of a process with unmeasured disturbances that change its steady-state gain sign. Journal of Process Control 23:3, pages 294-305.
Crossref
M. Graça, A. Duarte, P.J. Coelho & M. Costa. (2013) Numerical simulation of a reversed flow small-scale combustor. Fuel Processing Technology 107, pages 126-137.
Crossref
Xiao Liu & Hongtao Zheng. (2013) Numerical Simulation of Air Inlet Conditions Influence on the Establishment of MILD Combustion in Stagnation Point Reverse Flow Combustor. Mathematical Problems in Engineering 2013, pages 1-9.
Crossref
V. Mahendra Reddy, Darshan Sawant, Darshan Trivedi & Sudarshan Kumar. (2013) Studies on a liquid fuel based two stage flameless combustor. Proceedings of the Combustion Institute 34:2, pages 3319-3326.
Crossref
A Veríssimo, R Oliveira, P J Coelho & M Costa. (2012) Numerical Simulation of a Small-Scale Mild Combustor. Journal of Physics: Conference Series 395, pages 012003.
Crossref
M. Vascellari & G. Cau. (2012) Influence of turbulence–chemical interaction on CFD pulverized coal MILD combustion modeling. Fuel 101, pages 90-101.
Crossref
Javad Aminian, Chiara Galletti, Shahrokh Shahhosseini & Leonardo Tognotti. (2012) Numerical Investigation of a MILD Combustion Burner: Analysis of Mixing Field, Chemical Kinetics and Turbulence-Chemistry Interaction. Flow, Turbulence and Combustion 88:4, pages 597-623.
Crossref
Lei Chen, Sze Zheng Yong & Ahmed F. Ghoniem. (2012) Oxy-fuel combustion of pulverized coal: Characterization, fundamentals, stabilization and CFD modeling. Progress in Energy and Combustion Science 38:2, pages 156-214.
Crossref
B. Danon, E.-S. Cho, W. de Jong & D.J.E.M. Roekaerts. (2011) Numerical investigation of burner positioning effects in a multi-burner flameless combustion furnace. Applied Thermal Engineering 31:17-18, pages 3885-3896.
Crossref
Ashoke De, Ernst Oldenhof, Pratap Sathiah & Dirk Roekaerts. (2011) Numerical Simulation of Delft-Jet-in-Hot-Coflow (DJHC) Flames Using the Eddy Dissipation Concept Model for Turbulence–Chemistry Interaction. Flow, Turbulence and Combustion 87:4, pages 537-567.
Crossref
B.T. Zoller, J.M. Allegrini, U. Maas & P. Jenny. (2011) PDF model for NO calculations with radiation and consistent NO–NO2 chemistry in non-premixed turbulent flames. Combustion and Flame 158:8, pages 1591-1601.
Crossref
Pengfei Li, Jianchun Mi, Bassam B. Dally, Richard A. Craig & Feifei Wang. (2011) Premixed Moderate or Intense Low-Oxygen Dilution (MILD) Combustion from a Single Jet Burner in a Laboratory-Scale Furnace. Energy & Fuels 25:7, pages 2782-2793.
Crossref
Chungen Yin, Lasse A. Rosendahl & Søren K. Kær. (2011) Chemistry and radiation in oxy-fuel combustion: A computational fluid dynamics modeling study. Fuel 90:7, pages 2519-2529.
Crossref
PengFei Li, JianChun Mi, B. B. Dally, FeiFei Wang, Lin Wang, ZhaoHui Liu, Sheng Chen & ChuGuang Zheng. (2011) Progress and recent trend in MILD combustion. Science China Technological Sciences 54:2, pages 255-269.
Crossref
J. Collazo, J. Porteiro, D. Patiño, J.L. Miguez, E. Granada & J. Moran. (2009) Simulation and experimental validation of a methanol burner. Fuel 88:2, pages 326-334.
Crossref
Di He, Yusong Yu, Yucheng Kuang & Chaojun Wang. (2022) Analysis of Edc Constants for Predictions of Methane Mild Combustion. SSRN Electronic Journal.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.