696
Views
54
CrossRef citations to date
0
Altmetric
Original Articles

Combustion and Conversion Efficiency of Nanoaluminum-Water Mixtures

, , , , &
Pages 2127-2142 | Published online: 21 Oct 2008

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (4)

Fan Li, Baozhong Zhu, Yunlan Sun & Wei Shi. (2020) Reaction characteristics of micron-sized Al powder with adding Al/CuO nano-thermite in heated steam. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 0:0, pages 1-15.
Read now
Vladimir Shmelev, Vladimir Nikolaev & Sergey Finiakov. (2018) Combustion of hydro-reactive compositions on the base of a metal–polymer matrix. Combustion Science and Technology 190:10, pages 1738-1749.
Read now
Matthew M. Schmitt, Patrick R. Bowden, Bryce C. Tappan & Dale Henneke. (2018) Steady-state shock-driven reactions in mixtures of nano-sized aluminum and dilute hydrogen peroxide. Journal of Energetic Materials 36:3, pages 266-277.
Read now
DavidE. Kittell, LoriJ. Groven, TravisR. Sippel, TimothéeL. Pourpoint & StevenF. Son. (2013) Dependence of Nano-Aluminum and Water Propellant Combustion on pH and Rheology. Combustion Science and Technology 185:5, pages 817-834.
Read now

Articles from other publishers (50)

Peihui Xu, Xingang Dong, Wenke Zhang, Yuxin Yang, Xueqin Liao & Jianzhong Liu. (2024) Effect of AP coating or blending on the ignition and combustion of Al particles under a high-pressure water vapour–Ar environment. Combustion and Flame 263, pages 113382.
Crossref
Yao Shu, Wenchao Zhang, Zhimin Fan, Songchen Yue, Bo Yin, Larry K.B. Li, Peijin Liu, Ping Ren & Wen Ao. (2024) Improving the combustion efficiency and agglomeration of aluminum-water propellants via n-Al/CuO metastable intermolecular composites. Combustion and Flame 260, pages 113246.
Crossref
Zhanbin Nie, Xing Zhou, Zhixun Xia & Zhicheng He. (2023) Effects of Al content and particle size on the combustion characteristic of hydrogen peroxide gel and micron-aluminum mixtures. Acta Astronautica 213, pages 464-477.
Crossref
Yan Zhang, Jianhua Yi, Xiao Xie, Chao Chen, Haijian Li, Wei Li, Yi Xu, Zhihua Sun & Fengqi Zhao. (2023) Numerical simulation of nano-aluminum ignition in oxygen and steam environments. FirePhysChem.
Crossref
Peihui Xu, Jianzhong Liu, Xingang Dong, Wenke Zhang, Yuxin Yang & Weijuan Yang. (2023) Ignition and combustion of Al and ammonium perchlorate-coated Al particles in a double oxidizing air–H2O–Ar atmosphere. Combustion and Flame 251, pages 112673.
Crossref
Peng Ma, Shuangfeng Wang & Xiuzhen Wang. (2022) Experimental Study of Combustion Characteristics of Micron-Sized Aluminum Particles and Liquid Water. Journal of Propulsion and Power 38:3, pages 331-338.
Crossref
Xihui Wang, Kuo Huang, Yan Yuying & Hailin Cen. 2022. Advances in Nanofluid Heat Transfer. Advances in Nanofluid Heat Transfer 229 263 .
Robert E. Ferguson & Evgeny Shafirovich. (2021) Combustion of Gelled HAN/Methanol/Water Propellants. Propellants, Explosives, Pyrotechnics 46:11, pages 1672-1678.
Crossref
Rui-Kang Dong, Zheng Mei, Feng-Qi Zhao, Si-Yu Xu & Xue-Hai Ju. (2021) Initial oxidation of nano-aluminum particles by H2O/H2O2: Molecular dynamics simulation. International Journal of Hydrogen Energy 46:1, pages 1234-1245.
Crossref
Hussain Vali Rajammagari & Marouf Wani Mohmad. (2020) The effect of mixed nanoadditive‐blended diesel–water emulsion on the performance, combustion, and emission characteristics of a DI diesel engine. Heat Transfer 49:6, pages 3531-3548.
Crossref
Rui-Kang Dong, Zheng Mei, Feng-Qi Zhao, Si-Yu Xu & Xue-Hai Ju. (2019) Molecular dynamics simulation on the reaction of nano-aluminum with water: size and passivation effects. RSC Advances 9:71, pages 41918-41926.
Crossref
A. Yu. Krainov & V. A. Poryazov. (2019) Mathematical Model and Calculation of the Rate of Combustion of a Frozen Aqueous Suspension of a Nanodisperse Aluminum. Journal of Engineering Physics and Thermophysics 92:5, pages 1338-1348.
Crossref
Murali Gopal Muraleedharan, Umesh Unnikrishnan, Asegun Henry & Vigor Yang. (2019) Flame propagation in nano-aluminum–water (nAl–H2O) mixtures: The role of thermal interface resistance. Combustion and Flame 201, pages 160-169.
Crossref
Shahar Wollmark & Yinon Yavor. (2019) Burning Rates of Nanoaluminum–Water Solid Propellants at Various Pressures. Journal of Propulsion and Power 35:1, pages 173-181.
Crossref
M. G. Gautham & P. A. Ramakrishna. (2018) Combustion Characteristics of Aluminum–Water Gelled Composite Propellant. Journal of Propulsion and Power 34:5, pages 1345-1354.
Crossref
Junpeng Liu, Mengjun Wang & Pingan Liu. (2018) Molecular dynamical simulations of melting Al nanoparticles using a reaxff reactive force field. Materials Research Express 5:6, pages 065011.
Crossref
Dilip Sundaram. (2018) Metal-Water mixtures for Propulsion and Energy-Conversion Applications: Recent Progress and Future Directions. Eurasian Chemico-Technological Journal 20:1, pages 53.
Crossref
Yunlan Sun, Qichang Wang, Yuxin Wu, Baozhong Zhu & Jianfeng Pan. (2017) Numerical simulation of the combustion of nano-aluminum in carbon dioxide. Acta Astronautica 139, pages 428-434.
Crossref
Wenjie Wang, Haibin Zhang, Zhongchuang Zhao, Qinghai Zheng & Bofeng Bai. (2017) Mixing of hollow-cone water spray in a confined high-temperature gas crossflow. Computers & Fluids 154, pages 216-223.
Crossref
Dilip Sundaram, Vigor Yang & Richard A. Yetter. (2017) Metal-based nanoenergetic materials: Synthesis, properties, and applications. Progress in Energy and Combustion Science 61, pages 293-365.
Crossref
Boris Khasainov, Marc Comet, Bernard Veyssiere & Denis Spitzer. (2017) Comparison of Performance of Fast‐Reacting Nanothermites and Primary Explosives. Propellants, Explosives, Pyrotechnics 42:7, pages 754-772.
Crossref
Saptarshi Basu & Ankur Miglani. (2016) Combustion and heat transfer characteristics of nanofluid fuel droplets: A short review. International Journal of Heat and Mass Transfer 96, pages 482-503.
Crossref
Danielle Quijano, Amy L. Corcoran & Edward L. Dreizin. (2015) Combustion of Mechanically Alloyed Aluminum‐Magnesium Powders in Steam. Propellants, Explosives, Pyrotechnics 40:5, pages 749-754.
Crossref
Daniel A. Rodriguez, Edward L. Dreizin & Evgeny Shafirovich. (2015) Hydrogen generation from ammonia borane and water through combustion reactions with mechanically alloyed Al·Mg powder. Combustion and Flame 162:4, pages 1498-1506.
Crossref
A. M. Starik, A. M. Savel’ev & N. S. Titova. (2015) Specific features of ignition and combustion of composite fuels containing aluminum nanoparticles (Review). Combustion, Explosion, and Shock Waves 51:2, pages 197-222.
Crossref
Takafumi Sasaki, Kenichi Takahashi & Takuo Kuwahara. (2015) Combustion characteristic of solid propellants used H2O. Combustion characteristic of solid propellants used H2O.
Marco A. Machado, Daniel A. Rodriguez, Edward L. Dreizin & Evgeny Shafirovich. (2015) Chemical Gas Generators Based on Mechanically Alloyed Al·Mg Powder. MRS Proceedings 1758.
Crossref
Dilip Srinivas Sundaram & Vigor Yang. (2014) Combustion of micron-sized aluminum particle, liquid water, and hydrogen peroxide mixtures. Combustion and Flame 161:9, pages 2469-2478.
Crossref
Bryce C. Tappan, Matthew R. Dirmyer & Grant A. Risha. (2014) Evidence of a Kinetic Isotope Effect in Nanoaluminum and Water Combustion. Angewandte Chemie International Edition 53:35, pages 9218-9221.
Crossref
Bryce C. Tappan, Matthew R. Dirmyer & Grant A. Risha. (2014) Evidence of a Kinetic Isotope Effect in Nanoaluminum and Water Combustion. Angewandte Chemie 126:35, pages 9372-9375.
Crossref
Dilip Srinivas Sundaram & Vigor Yang. (2014) Effects of entrainment and agglomeration of particles on combustion of nano-aluminum and water mixtures. Combustion and Flame 161:8, pages 2215-2217.
Crossref
Baozhong Zhu, Yunlan Sun & Huajian Sun. (2014) Enhanced Al-H2O-based fuels combustion characteristics with polyacrylamide at low pressures. Russian Journal of Physical Chemistry B 8:4, pages 492-498.
Crossref
Alexander M. Starik, Pavel S. Kuleshov, Alexander S. Sharipov, Nataliya S. Titova & Chuen-Jinn Tsai. (2014) Numerical analysis of nanoaluminum combustion in steam. Combustion and Flame 161:6, pages 1659-1667.
Crossref
Charalambos Mandilas, George Karagiannakis, Athanasios G. Konstandopoulos, Carlo Beatrice, Maurizio Lazzaro, Gabriele Di Blasio, Santiago Molina, José V. Pastor & Antonio Gil. (2014) Study of Basic Oxidation and Combustion Characteristics of Aluminum Nanoparticles under Enginelike Conditions. Energy & Fuels 28:5, pages 3430-3441.
Crossref
Grant A. Risha, Terrence L. ConnellJr.Jr., Richard A. Yetter, Dilip S. Sundaram & Vigor Yang. (2014) Combustion of Frozen Nanoaluminum and Water Mixtures. Journal of Propulsion and Power 30:1, pages 133-142.
Crossref
Baozhong Zhu, Hao Li, Yunlan Sun, Huajian Sun & Guohua Liu. (2014) Effects of Polyacrylamide and Particle Size on Combustion of Al^|^#8211;H2O-Based Propellants. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 47:9, pages 730-736.
Crossref
Ashvin Kumar Narayana Swamy & Evgeny Shafirovich. (2014) Conversion of aluminum foil to powders that react and burn with water. Combustion and Flame 161:1, pages 322-331.
Crossref
Wando Ki, Vladimir Shmelev, Sergey Finiakov, Yongho Cho & Woong-sup Yoon. (2013) Combustion of micro aluminum?water mixtures. Combustion and Flame 160:12, pages 2990-2995.
Crossref
Dilip Srinivas Sundaram, Vigor Yang, Ying Huang, Grant A. Risha & Richard A. Yetter. (2013) Effects of particle size and pressure on combustion of nano-aluminum particles and liquid water. Combustion and Flame 160:10, pages 2251-2259.
Crossref
Travis R. Sippel, Timothée L. Pourpoint & Steven F. Son. (2013) Combustion of Nanoaluminum and Water Propellants: Effect of Equivalence Ratio and Safety/Aging Characterization. Propellants, Explosives, Pyrotechnics 38:1, pages 56-66.
Crossref
Jun Su Shin & Hong Gye Sung. (2013) Theoretical Study on Premixed Flames of Nano Aluminum Particles and Water Mixture. Applied Mechanics and Materials 284-287, pages 567-571.
Crossref
Dilip S. Sundaram, Vigor Yang, Terrence L. ConnellJr.Jr., Grant A. Risha & Richard A. Yetter. (2013) Flame propagation of nano/micron-sized aluminum particles and ice (ALICE) mixtures. Proceedings of the Combustion Institute 34:2, pages 2221-2228.
Crossref
Christopher R. Zaseck, Steven F. Son & Timothée L. Pourpoint. (2013) Combustion of micron-aluminum and hydrogen peroxide propellants. Combustion and Flame 160:1, pages 184-190.
Crossref
Jun Wan, Shuizhou Cai, Yuan Liu, Changsheng Xie, Xianping Xia & Dawen Zeng. (2012) Reaction characteristics of nano-aluminum and water by in-situ investigation. Materials Chemistry and Physics 136:2-3, pages 466-471.
Crossref
François D. Brunet & Helen A. Joly. (2012) Electron Paramagnetic Resonance Spectroscopic Evidence for the Interaction of HAlOH with Water Molecules. The Journal of Physical Chemistry A 116:17, pages 4267-4273.
Crossref
Terrence L. ConnellJr.Jr., Grant A. Risha, Richard A. Yetter, Gregory Young, Dilip S. Sundaram & Vigor Yang. (2011) Combustion of alane and aluminum with water for hydrogen and thermal energy generation. Proceedings of the Combustion Institute 33:2, pages 1957-1965.
Crossref
Yang Yajing & He Maogang. (2010) Green Ramjets Based on Metal/Water Reaction. Green Ramjets Based on Metal/Water Reaction.
Y Yang & M He. (2009) A theoretical investigation of thermodynamic performance for a ramjet based on a magnesium—water reaction. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment 224:1, pages 61-72.
Crossref
Justin L. Sabourin, Daniel M. Dabbs, Richard A. Yetter, Frederick L. Dryer & Ilhan A. Aksay. (2009) Functionalized Graphene Sheet Colloids for Enhanced Fuel/Propellant Combustion. ACS Nano 3:12, pages 3945-3954.
Crossref
Travis Sippel, Steven Son, Grant Risha & Richard Yetter. (2008) Combustion and Characterization of Nanoscale Aluminum and Ice Propellants. Combustion and Characterization of Nanoscale Aluminum and Ice Propellants.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.