107
Views
94
CrossRef citations to date
0
Altmetric
Original Articles

Mechanism of Instabilities of Exothermic Hypersonic Blunt-Body Flows

&
Pages 63-76 | Received 25 Jan 1971, Published online: 10 May 2007

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (3)

L.K. Cole, A.R. Karagozian & J.-L. Cambier. (2012) Stability of Flame-Shock Coupling in Detonation Waves: 1D Dynamics. Combustion Science and Technology 184:10-11, pages 1502-1525.
Read now
Shaye Yungster & Krishnan Radhakrishnan. (2004) Pulsating one-dimensional detonations in hydrogen–air mixtures. Combustion Theory and Modelling 8:4, pages 745-770.
Read now
Longting HE. (2000) Theory of Weakly Unstable Multi-Dimensional Detonation. Combustion Science and Technology 160:1, pages 65-101.
Read now

Articles from other publishers (91)

I. A. Bedarev, A. A. Syrovaten & V. M. Temerbekov. (2024) Numerical Simulation of Oblique Detonation Initiation by a High-Velocity Projectile Flying in a Hydrogen–Air Mixture. Combustion, Explosion, and Shock Waves 60:1, pages 15-24.
Crossref
Pradeep Kumar Pavalavanni, Min-Seon Jo, Jae-Eun Kim & Jeong-Yeol Choi. (2023) Numerical Study of Unstable Shock-Induced Combustion with Different Chemical Kinetics and Investigation of the Instability Using Modal Decomposition Technique. Aerospace 10:3, pages 292.
Crossref
Zhuo Xu, Gang Dong & Yang Wang. (2023) A study of pulsating behavior and stability parameter for one-dimensional non-ideal detonations. Physics of Fluids 35:1.
Crossref
Yong Xu & Huangwei Zhang. (2022) Pulsating propagation and extinction of hydrogen detonations in ultrafine water sprays. Combustion and Flame 241, pages 112086.
Crossref
Ruixuan Zhu, Xiaohang Fang, Chao Xu, Majie Zhao, Huangwei Zhang & Martin Davy. (2022) Pulsating one-dimensional detonation in ammonia-hydrogen–air mixtures. International Journal of Hydrogen Energy 47:50, pages 21517-21536.
Crossref
Xinxin Wang, Ralf Deiterding, Jianhan Liang, Xiaodong Cai & Wandong Zhao. (2022) A second-order-accurate immersed boundary ghost-cell method with hybrid reconstruction for compressible flow simulations. Computers & Fluids 237, pages 105314.
Crossref
Han Peng, Chay W.C. Atkins & Ralf Deiterding. (2022) A solver for simulating shock-induced combustion on curvilinear adaptive meshes. Computers & Fluids 232, pages 105188.
Crossref
Yaroslava E. Poroshyna, Aleksander I. Lopato & Pavel S. Utkin. (2021) Nonlinear dynamics of pulsating detonation wave with two-stage chemical kinetics in the shock-attached frame. Journal of Inverse and Ill-posed Problems 29:4, pages 557-576.
Crossref
Majie Zhao, Zhuyin Ren & Huangwei Zhang. (2021) Pulsating detonative combustion in n-heptane/air mixtures under off-stoichiometric conditions. Combustion and Flame 226, pages 285-301.
Crossref
Alexander I. Lopato. 2021. Applied Mathematics and Computational Mechanics for Smart Applications. Applied Mathematics and Computational Mechanics for Smart Applications 103 114 .
Honghui Teng, Shuai Liu & Zijian Zhang. (2020) Unsteady combustion mode with a super-high frequency induced by a curved shock. Physics of Fluids 32:11.
Crossref
W. J. Ma, C. Wang & W. H. Han. (2020) Effect of concentration inhomogeneity on the pulsating instability of hydrogen–oxygen detonations. Shock Waves 30:7-8, pages 703-711.
Crossref
Wenhu Han, Wenjin Ma, Chengeng Qian, Jennifer Wen & Cheng Wang. (2019) Bifurcation of pulsation instability in one-dimensional detonation with detailed reaction mechanism . Physical Review Fluids 4:10.
Crossref
Chian Yan, Hong Hui Teng, Xiao Cheng Mi & Hoi Dick Ng. (2019) The Effect of Chemical Reactivity on the Formation of Gaseous Oblique Detonation Waves. Aerospace 6:6, pages 62.
Crossref
Wenhu Han, Cheng Wang & Chung K Law. (2019) Pulsation in one-dimensional H2–O2 detonation with detailed reaction mechanism. Combustion and Flame 200, pages 242-261.
Crossref
Pradeep Kumar Pavalavanni, Chae Hoon Sohn, Bok Jik Lee & Jeong-Yeol Choi. (2019) Revisiting unsteady shock-induced combustion with modern analysis techniques. Proceedings of the Combustion Institute 37:3, pages 3637-3644.
Crossref
Yu Liu, Lan Wang, Baoguo Xiao, Zhihui Yan & Chao Wang. (2018) Hysteresis phenomenon of the oblique detonation wave. Combustion and Flame 192, pages 170-179.
Crossref
Haibo Dong, Fan Zhang, Chunguang Xu & Jun Liu. (2018) An improved uncoupled finite volume solver for simulating unsteady shock-induced combustion. Computers & Fluids 167, pages 146-157.
Crossref
Pengfei Yang, Hoi Dick Ng, Honghui Teng & Zonglin Jiang. (2017) Initiation structure of oblique detonation waves behind conical shocks. Physics of Fluids 29:8.
Crossref
XiaoCheng Mi, Evgeny V. Timofeev & Andrew J. Higgins. (2017) Effect of spatial discretization of energy on detonation wave propagation. Journal of Fluid Mechanics 817, pages 306-338.
Crossref
P. Pradeep Kumar, Jeong-Yeol Choi, Jinwoo Son & Chae Hoon Sohn. (2017) Applications of Dynamic Mode Decomposition to Unstable Shock-Induced Combustion. Journal of the Korean Society of Propulsion Engineers 21:2, pages 9-17.
Crossref
Wenhu Han, Wenjun Kong, Yang Gao & Chung K. Law. (2017) The role of global curvature on the structure and propagation of weakly unstable cylindrical detonations. Journal of Fluid Mechanics 813, pages 458-481.
Crossref
Shinichi MAEDA, Isshu YOSHIKI, Shoichiro KANNO, Keita TOMITA & Tetsuro OBARA. (2017) Occurrence conditions for unsteady combustions in shock-induced combustions around spherical projectiles. Transactions of the JSME (in Japanese) 83:852, pages 17-00019-17-00019.
Crossref
Wenhu Han, Yang Gao, Cheng Wang & Chung K. Law. (2015) Coupled pulsating and cellular structure in the propagation of globally planar detonations in free space. Physics of Fluids 27:10.
Crossref
Kazushige Maeda & Akiko Matsuo. (2015) Numerical Investigation of Shock-Induced Combustion with Unsteady Oscillation around Hypervelocity Conical Projectile. Numerical Investigation of Shock-Induced Combustion with Unsteady Oscillation around Hypervelocity Conical Projectile.
Bin Li & Li Yuan. (2012) Convergence issues in using high‐resolution schemes and lower–upper symmetric Gauss–Seidel method for steady shock‐induced combustion problems. International Journal for Numerical Methods in Fluids 71:11, pages 1422-1437.
Crossref
Anatoly A. Vasil’ev. 2012. Shock Waves Science and Technology Library, Vol. 6. Shock Waves Science and Technology Library, Vol. 6 213 279 .
Hoi Dick Ng & Fan Zhang. 2012. Shock Waves Science and Technology Library, Vol. 6. Shock Waves Science and Technology Library, Vol. 6 107 212 .
M. I. Radulescu & J. Tang. (2011) Nonlinear Dynamics of Self-Sustained Supersonic Reaction Waves: Fickett’s Detonation Analogue. Physical Review Letters 107:16.
Crossref
Erik Axdahl, Ajay Kumar & Alan Wilhite. (2011) Study of Unsteady, Sphere-Driven, Shock-Induced Combustion for Application to Hypervelocity Airbreathing Propulsion. Study of Unsteady, Sphere-Driven, Shock-Induced Combustion for Application to Hypervelocity Airbreathing Propulsion.
Benjamin Texier & Kevin Zumbrun. (2011) Transition to Longitudinal Instability of Detonation Waves is Generically Associated with Hopf Bifurcation to Time-Periodic Galloping Solutions. Communications in Mathematical Physics 302:1, pages 1-51.
Crossref
Jimmy Verreault & Andrew J. Higgins. (2011) Initiation of detonation by conical projectiles. Proceedings of the Combustion Institute 33:2, pages 2311-2318.
Crossref
Kevin Zumbrun. 2011. Nonlinear Conservation Laws and Applications. Nonlinear Conservation Laws and Applications 123 167 .
C. Leung, M. I. Radulescu & G. J. Sharpe. (2010) Characteristics analysis of the one-dimensional pulsating dynamics of chain-branching detonations. Physics of Fluids 22:12.
Crossref
Kevin Zumbrun. (2010) The refined inviscid stability condition and cellular instability of viscous shock waves. Physica D: Nonlinear Phenomena 239:13, pages 1180-1187.
Crossref
Benjamin Texier & Kevin Zumbrun. (2008) Galloping instability of viscous shock waves. Physica D: Nonlinear Phenomena 237:10-12, pages 1553-1601.
Crossref
Yu Daimon & Akiko Matsuo. (2007) Unsteady features on one-dimensional hydrogen-air detonations. Physics of Fluids 19:11.
Crossref
Li Yuan & Tao Tang. (2007) Resolving the shock-induced combustion by an adaptive mesh redistribution method. Journal of Computational Physics 224:2, pages 587-600.
Crossref
D. Scott Stewart & Aslan R. Kasimov. (2006) State of Detonation Stability Theory and Its Application to Propulsion. Journal of Propulsion and Power 22:6, pages 1230-1244.
Crossref
Gregory Lyng & Kevin Zumbrun. (2004) A stability index for detonation waves in Majda’s model for reacting flow. Physica D: Nonlinear Phenomena 194:1-2, pages 1-29.
Crossref
Yu Daimon & Akiko Matsuo. (2004) Longitudinal Oscillation Mode of One-Dimensional H2-Air Detonations. Longitudinal Oscillation Mode of One-Dimensional H2-Air Detonations.
Shaye Yungster & Krishnan Radhakrishnan. (2003) Structure and Stability of One-dimensional Detonations in Ethylene-Air Mixtures. Structure and Stability of One-dimensional Detonations in Ethylene-Air Mixtures.
Suyeon Moon, Chungwon Lee & Changhyn Sohn. (2002) Adaptive Finite Element Analysis of Shock-induced Combustion. Adaptive Finite Element Analysis of Shock-induced Combustion.
Shaye Yungster & Krishnan Radhakrishnan. (2002) Computational Study of Near-Limit Propagation of Detonation in Hydrogen-Air Mixtures. Computational Study of Near-Limit Propagation of Detonation in Hydrogen-Air Mixtures.
A. Matsuo. (2002) Instability of projectile-induced combustion. Instability of projectile-induced combustion.
Y. Kamiyama & A. Matsuo. (2002) Characteristics of shock-induced combustion around hypersonic cylindrical projectiles into combustible gases. Characteristics of shock-induced combustion around hypersonic cylindrical projectiles into combustible gases.
Jiro Kasahara, Toshi Fujiwara, Takuma Endo & Takakage Arai. (2001) Chapman-Jouguet Oblique Detonation Structure Around Hypersonic Projectiles. AIAA Journal 39:8, pages 1553-1561.
Crossref
Yusuke Kamiyama & Akiko Matsuo. (2000) Flow features of shock-induced combustion around cylindrical projectiles. Proceedings of the Combustion Institute 28:1, pages 671-677.
Crossref
Mark Short, Ashwani K. Kapila & J. J. Quirk. (1999) The chemical-gas dynamic mechanisms of pulsating detonation wave instability. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 357:1764, pages 3621-3637.
Crossref
Akiko Matsuo & Kozo Fujii. (1998) Prediction Method of Unsteady Combustion Around Hypersonic Projectile in Stoichiometric Hydrogen-Air. AIAA Journal 36:10, pages 1834-1841.
Crossref
Yiguang Ju, Goro Masuya & Akihiro Sasoh. (1998) Numerical and theoretical studies on detonation initiation by a supersonic projectile. Symposium (International) on Combustion 27:2, pages 2225-2231.
Crossref
A. Matsuo. 1998. Ram Accelerators. Ram Accelerators 271 278 .
Y. Ju, A. Sasoh & G. Masuya. 1998. Ram Accelerators. Ram Accelerators 255 262 .
A. A. Vasilśev. (1997) Detonation combustion of gas mixtures using a hypervelocity projectile. Combustion, Explosion, and Shock Waves 33:5, pages 583-597.
Crossref
A. Higgins & A. Higgins. (1997) The effect of confinement on detonation initiation by blunt projectiles. The effect of confinement on detonation initiation by blunt projectiles.
A. Matsuo & K. Fujii. (1997) Numerical investigation of the one-dimensional piston supported detonation waves. Energy Conversion and Management 38:10-13, pages 1283-1295.
Crossref
Akiko Matsuo & Kozo Fujii. (1996) Detailed mechanism of the unsteady combustion around hypersonic projectiles. AIAA Journal 34:10, pages 2082-2089.
Crossref
Akiko Matsuo & Kozo Fujii. (1996) First Damkoehler parameter for prediction and classification of unsteady combustions around hypersonic projectiles. First Damkoehler parameter for prediction and classification of unsteady combustions around hypersonic projectiles.
J. K. Ahuja, A. Kumar, D. J. Singh & S. N. Tiwari. (1996) Simulation of shock-induced combustion past blunt projectiles using shock-fitting technique. Journal of Propulsion and Power 12:3, pages 518-526.
Crossref
K. Ghorbanian & J. D. Sterling. (1996) Influence of formation processes on oblique detonation wave stabilization. Journal of Propulsion and Power 12:3, pages 509-517.
Crossref
Shaye Yungster & Krishnan Radhakrishnan. (1996) A fully implicit time accurate method for hypersonic combustion: application to shock-induced combustion instability. Shock Waves 5:5, pages 293-303.
Crossref
J. Ahuja & S. Tiwari. (1996) Effects of various flow and physical parameters on stability of shock-induced-combustion. Effects of various flow and physical parameters on stability of shock-induced-combustion.
A. Higgins & A. Bruckner. (1996) Experimental investigation of detonation initiation by hypervelocity blunt projectiles. Experimental investigation of detonation initiation by hypervelocity blunt projectiles.
Jiro Kasahara, Takahiro Horii, Takuma Endo & Toshi Fujiwara. (1996) Experimental observation of unsteady H2?O2 combustion phenomena around hypersonic projectiles using a multiframe camera. Symposium (International) on Combustion 26:2, pages 2903-2908.
Crossref
Genadi Tivanov & Josef Rom. (1995) Stability of hypersonic reacting stagnation flow of a detonatable gas mixture by dynamical systems analysis. Combustion and Flame 103:4, pages 311-327.
Crossref
Akiko Matsuo & Kozo Fujii. (1995) Computational study of large-disturbance oscillations in unsteady supersonic combustion around projectiles. AIAA Journal 33:10, pages 1828-1835.
Crossref
Kaveh Ghorbanian & James Sterling. (1995) Detonation initiation on a wedge in a supersonic reacting flow. Detonation initiation on a wedge in a supersonic reacting flow.
Akiko Matsuo, Kozo Fujii & Toshi Fujiwara. (1995) Flow features of shock-induced combustion around projectile traveling at hypervelocities. AIAA Journal 33:6, pages 1056-1063.
Crossref
J Ahuja, S Tiwari & A Kumar. (1995) Numerical investigation of shock-induced combustion past blunt projectiles in regular and large-disturbance regimes. Numerical investigation of shock-induced combustion past blunt projectiles in regular and large-disturbance regimes.
Paul D. Orkwis, Chung-Jen Tam & Peter J. Disimile. (1995) Observations on using experimental data as boundary conditions for computations. AIAA Journal 33:1, pages 176-178.
Crossref
J. K. Ahuja, S. N. Tiwari & D. J. Singh. (1995) Hypersonic shock-induced combustion in a hydrogen-air system. AIAA Journal 33:1, pages 173-176.
Crossref
A. A. Vasiljev. (1994) Initiation of gaseous detonation by a high speed body. Shock Waves 3:4, pages 321-326.
Crossref
Myles Sussman. (1994) A computational study of unsteady shock-induced combustion of hydrogen-air mixtures. A computational study of unsteady shock-induced combustion of hydrogen-air mixtures.
J. Ahuja, A. Kumar, D. Singh & S. Tiwari. (1994) Numerical simulation of shock-induced combustion past blunt projectiles using shock-fitting technique. Numerical simulation of shock-induced combustion past blunt projectiles using shock-fitting technique.
Akiko Matsuo, Kozo Fujii & Toshi Fujiwara. (1994) Computational study of unsteady combustion around projectiles with emphasis on the large-disturbance oscillation. Computational study of unsteady combustion around projectiles with emphasis on the large-disturbance oscillation.
J. Ahuja & S. Tiwari. (1994) A parametric study of shock-induced combustion in a hydrogen-air system. A parametric study of shock-induced combustion in a hydrogen-air system.
Joseph E. Shepherd. 1994. Combustion in High-Speed Flows. Combustion in High-Speed Flows 373 420 .
Ajay Kumar & D. J. Singh. 1994. Transition, Turbulence and Combustion. Transition, Turbulence and Combustion 289 300 .
Akiko Matsuo & Toshi Fujiwara. (1993) Numerical investigation of oscillatory instability in shock-induced combustion around a blunt body. AIAA Journal 31:10, pages 1835-1841.
Crossref
GENADI TIVANOV & JOSEF ROM. (1993) Analysis of the stability characteristics of hypersonic flow of a detonable gas mixture in the stagnation region of a blunt body. Analysis of the stability characteristics of hypersonic flow of a detonable gas mixture in the stagnation region of a blunt body.
Gregory J. Wilson & Myles A. Sussman. (1993) Computation of unsteady shock-induced combustion using logarithmic species conservation equations. AIAA Journal 31:2, pages 294-301.
Crossref
J. AHUJA & S. TIWARI. (1993) Numerical simulation of shock-induced combustion in a superdetonative hydrogen-air system. Numerical simulation of shock-induced combustion in a superdetonative hydrogen-air system.
MYLES SUSSMAN. (1993) Source term evaluation for combustion modeling. Source term evaluation for combustion modeling.
. 1993. Dynamic Aspects of Explosion Phenomena. Dynamic Aspects of Explosion Phenomena 516 531 .
Blaine W. Asay, John M. McAfee & Eric N. Ferm. (1992) Nonsteady detonation driven by a hypervelocity jet in a homogeneous explosive. Physics of Fluids A: Fluid Dynamics 4:7, pages 1558-1565.
Crossref
D. SINGH, J. AHUJA & S. TIWARI. (1992) Investigation of hypersonic shock-induced combustion in a hydrogen-air system. Investigation of hypersonic shock-induced combustion in a hydrogen-air system.
D.J. Singh, J.K. Ahuja & M.H. Carpenter. (1992) Numerical simulation of shock-induced combustion/detonation. Computing Systems in Engineering 3:1-4, pages 201-215.
Crossref
AKIKO MATSUO & TOSHI FUJIWARA. (1991) Numerical simulation of shock-induced combustion around an axisymmetric blunt body. Numerical simulation of shock-induced combustion around an axisymmetric blunt body.
G.E. Abouseif & T.Y. Toong. (1982) Theory of unstable one-dimensional detonations. Combustion and Flame 45, pages 67-94.
Crossref
Tau-Yi Toong. (1974) Instabilities in reacting flows. Acta Astronautica 1:3-4, pages 317-344.
Crossref
J.C. Bellet, H.P. Donzier, J. Soustre & N. Manson. (1973) Influence of aerodynamic field on shock-inducedcombustion of hydrogen and ethylene in supersonic flow. Symposium (International) on Combustion 14:1, pages 595-602.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.