114
Views
108
CrossRef citations to date
0
Altmetric
Original Articles

Kinetics of NO and CO in Lean, Premixed Hydrocarbon-Air Flames

Pages 59-64 | Received 14 Jun 1971, Published online: 27 Apr 2007

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (18)

Jeffrey William Labahn & Cecile Devaud. (2017) Species and temperature predictions in a semi-industrial MILD furnace using a non-adiabatic conditional source-term estimation formulation. Combustion Theory and Modelling 21:3, pages 466-486.
Read now
CesarL. Barraza, AntonioJ. Bula & Argemiro Palencia. (2012) Modeling and Numerical Solution of Coal and Natural Gas Co-Combustion in a Rotary Kiln. Combustion Science and Technology 184:1, pages 26-43.
Read now
Shinku Lee, Seung Wook Baek, Man Young Kim & Young Min Sohn. (2007) Numerical Investigation of the Combustion Characteristics and Nitric Oxide Formation in a Municipal Waste Incinerator. Numerical Heat Transfer, Part A: Applications 52:8, pages 713-735.
Read now
T.H. YE, J. AZEVEDO, M. COSTA & V. SEMIAO∗. (2004) CO-COMBUSTION OF PULVERIZED COAL, PINE SHELLS, AND TEXTILE WASTES IN A PROPANE-FIRED FURNACE: MEASUREMENTS AND PREDICTIONS. Combustion Science and Technology 176:12, pages 2071-2104.
Read now
STEFANO ORSINO, ROMAN WEBER*UGO BOLLETTINI. (2001) NUMERICAL SIMULATION OF COMBUSTION OF NATURAL GAS WITH HIGH-TEMPERATURE AIR. Combustion Science and Technology 170:1, pages 1-34.
Read now
F. BREUSSIN, N. LALLEMANT & R. WEBER. (2000) Computing of Oxy-Natural Gas Flames using Both a Global Combustion Scheme and a Chemical Equilibrium Procedure. Combustion Science and Technology 160:1, pages 369-397.
Read now
André A. F. Peters & Roman Weber. (1997) Mathematical Modeling of a 2.4 MW Swirling Pulverized Coal Flame. Combustion Science and Technology 122:1-6, pages 131-182.
Read now
E. H. CHUI & P. M. J. HUGHES. (1996) Validation of NOx and NOx Precursor Predictions in Coal Flames. Combustion Science and Technology 119:1-6, pages 51-75.
Read now
Rosita Junus, John Frank Stubington & Geoffrey David Sergeant. (1994) The effects of design factors on emissions from natural gas cooktop burners. International Journal of Environmental Studies 45:2, pages 101-121.
Read now
Ravi Prasad, LawrenceA. Kennedy & Eli Ruckenstein. (1984) Catalytic Combustion. Catalysis Reviews 26:1, pages 1-58.
Read now
S.-K. TANG & STUARTW. CHURCHILL. (1981) A THEORETICAL MODEL FOR COMBUSTION REACTIONS INSIDE A REFRACTORY TUBE. Chemical Engineering Communications 9:1-6, pages 137-150.
Read now
F. C. LOCKWOOD. (1977) The Influence of Turbulence/Chemical Kinetics Interaction on CO Formation. Combustion Science and Technology 17:3-4, pages 105-107.
Read now
R. S. de CHAIR, C. G. W. SHEPPARD & M. WHITTAKER. (1976) A Note on Carbon Monoxide Oxidation with Particular Reference to Gas Turbine Combustion. Combustion Science and Technology 12:4-6, pages 245-247.
Read now
C. G. W. SHEPPARD. (1975) A Simple Model for Carbon Monoxide Oxidation in Gas Turbine Combustors†. Combustion Science and Technology 11:1-2, pages 49-56.
Read now
P. C. MALTE & D. T. PRATT. (1974) The Role of Energy-Releasing Kinetics in NOx Formation: Fuel-Lean, Jet-Stirred CO-Air Combustion. Combustion Science and Technology 9:5-6, pages 221-231.
Read now
D. R. HARDESTY & F. J. WEINBERG. (1973) Burners Producing Large Excess Enthalpies. Combustion Science and Technology 8:5-6, pages 201-214.
Read now

Articles from other publishers (90)

Lanbo Li, Yuegui Zhou, Chaoqiang Yang, Anwen Peng & Guanshuo Huang. (2023) Experimental investigation on the NO formation of pulverized coal combustion under high-temperature and low-oxygen environments simulating MILD oxy-fuel combustion conditions. Carbon Resources Conversion.
Crossref
Adeline Andrieu, Olivier Allgaier, Gontrand Leyssens, Cornelius Schönnenbeck & Jean-François Brilhac. (2022) NOx emissions in a swirled-stabilized magnesium flame. Fuel 321, pages 124011.
Crossref
Rongbin Xin, Jinguo Zhai, Chang Liao, Zongyu Wang, Jifeng Zhang, Zabihollah Bazari & Yulong Ji. (2022) Simulation Study on the Performance and Emission Parameters of a Marine Diesel Engine. Journal of Marine Science and Engineering 10:7, pages 985.
Crossref
Bartłomiej Hernik & Joanna Wnorowska. (2022) Numerical research on combustion processes and deposit formation on the deposition probe in the pulverized drop chamber. Renewable Energy 187, pages 1-13.
Crossref
Mohamed Ibrahim N.H.M. Udayakumar, Sivan Suresh, Suvanjan Bhattacharyya & Mohsen Sharifpur. (2020) Coupling LES with soot model for the study of soot volume fraction in a turbulent diffusion jet flames at various Reynolds number configurations. International Journal of Numerical Methods for Heat & Fluid Flow 31:7, pages 2246-2278.
Crossref
Chunguang Zhao, Kun Luo, Ruipeng Cai, Jiangkuan Xing, Zhengwei Gao & Jianren Fan. (2020) Large eddy simulations and analysis of NO emission characteristics in a laboratory pulverized coal flame. Fuel 279, pages 118316.
Crossref
Anil Bhurao Wakale, S. Banerjee & R. Banerjee. (2020) Estimation of NOx and soot emission from a constant volume n-butanol/n-dodecane blended spray using unsteady flamelet model based on n-dodecane/n-butanol/NOx/PAH chemistry. Journal of the Energy Institute 93:5, pages 1868-1882.
Crossref
N. H. Mohamed Ibrahim & M. Udayakumar. (2020) Coupling RSM with soot model for the study of soot formation in a momentum-dominated strained jet flames. Journal of Thermal Analysis and Calorimetry 141:6, pages 2369-2389.
Crossref
Bernhard Stiehl, Tommy Genova, Michelle Otero, Jonathan Reyes, Kareem A. Ahmed & Scott M. Martin. (2020) NO x Emission of an Axial-Staged Combustor at High-Pressure . NO x Emission of an Axial-Staged Combustor at High-Pressure .
Alumah Arad, Eran Sher & Giora Enden. (2020) Phenomenological soot modeling with solution mapping optimization of biodiesel-diesel blends in diesel engines. Thermal Science and Engineering Progress 18, pages 100544.
Crossref
Bahamin Bazooyar & Hamidreza Gohari Darabkhani. (2020) Design, manufacture and test of a micro-turbine renewable energy combustor. Energy Conversion and Management 213, pages 112782.
Crossref
Bartłomiej Hernik. (2020) Numerical Research of the Modification of the Combustion System in the OP 650 Boiler. Energies 13:3, pages 725.
Crossref
Salvatore Iavarone, Marianna Cafiero, Marco Ferrarotti, Francesco Contino & Alessandro Parente. (2019) A multiscale combustion model formulation for NO predictions in hydrogen enriched jet flames. International Journal of Hydrogen Energy 44:41, pages 23436-23457.
Crossref
Valentina Fortunato, Andres Giraldo, Mehdi Rouabah, Rabia Nacereddine, Michel Delanaye & Alessandro Parente. (2018) Experimental and Numerical Investigation of a MILD Combustion Chamber for Micro Gas Turbine Applications. Energies 11:12, pages 3363.
Crossref
Rohit Saini & Ashoke De. 2018. Modeling and Simulation of Turbulent Combustion. Modeling and Simulation of Turbulent Combustion 335 361 .
Shuonan Xu, Hirotaka Yamakawa, Keiya Nishida & Zoran Filipi. (2017) Quasi-Dimensional Diesel Engine Combustion Modeling With Improved Diesel Spray Tip Penetration, Ignition Delay, and Heat Release Submodels. Journal of Engineering for Gas Turbines and Power 139:11.
Crossref
Rohit Saini & Ashoke De. (2017) Assessment of soot formation models in lifted ethylene/air turbulent diffusion flame. Thermal Science and Engineering Progress 3, pages 49-61.
Crossref
Gyeong Taek Kim, Bo Hyeon Seo, Won June Lee, Jeong Park, Min Kuk Kim & Sang Min Lee. (2017) Effects of applying non-thermal plasma on combustion stability and emissions of NOx and CO in a model gas turbine combustor. Fuel 194, pages 321-328.
Crossref
Nozomu Hashimoto, Hiroaki Watanabe, Ryoichi Kurose & Hiromi Shirai. (2017) Effect of different fuel NO models on the prediction of NO formation/reduction characteristics in a pulverized coal combustion field. Energy 118, pages 47-59.
Crossref
Peter F. Barry, Stephen L. Somers†Stephen B. Londerville, Kenneth Ahn & Kevin Anderson. 2017. Heat Recovery Steam Generator Technology. Heat Recovery Steam Generator Technology 115 144 .
C.A. Tsiliyannis. (2016) Cement manufacturing using alternative fuels: Enhanced productivity and environmental compliance via oxygen enrichment. Energy 113, pages 1202-1218.
Crossref
Manedhar Reddy Busupally & Ashoke De. (2016) Numerical modeling of soot formation in a turbulent C 2 H 4 /air diffusion flame . International Journal of Spray and Combustion Dynamics 8:2, pages 67-85.
Crossref
Ambarish Datta & Bijan Kumar Mandal. Numerical investigation on the effects of EGR on CI engine characteristics using soyabean biodiesel. Numerical investigation on the effects of EGR on CI engine characteristics using soyabean biodiesel.
A. A Boateng. 2016. Rotary Kilns. Rotary Kilns 107 143 .
Manedhar Reddy, Ashoke De & Rakesh Yadav. (2015) Effect of precursors and radiation on soot formation in turbulent diffusion flame. Fuel 148, pages 58-72.
Crossref
Valentina Fortunato, Chiara Galletti, Leonardo Tognotti & Alessandro Parente. (2015) Influence of modelling and scenario uncertainties on the numerical simulation of a semi-industrial flameless furnace. Applied Thermal Engineering 76, pages 324-334.
Crossref
Zihong Xia, Jian Li, Tingting Wu, Caixia Chen & Xiaoke Zhang. (2014) CFD simulation of MSW combustion and SNCR in a commercial incinerator. Waste Management 34:9, pages 1609-1618.
Crossref
Christos Aristeides Tsiliyannis. (2014) Waste to Energy Operability Enhancement under Waste Uncertainty via Oxygen Enrichment. Environmental Science & Technology 48:16, pages 9925-9934.
Crossref
A Gnana Sagaya Raj, J M Mallikarjuna & Ganesan Venkitachalam. CFD Prediction of Combustion on Direct Injection Diesel Engine with Two Different Combustion Chamber Configurations. CFD Prediction of Combustion on Direct Injection Diesel Engine with Two Different Combustion Chamber Configurations.
Peter Barry, Stephen Somers & Steve Londerville. 2013. The John Zink Hamworthy Combustion Handbook, Second Edition. The John Zink Hamworthy Combustion Handbook, Second Edition 93 115 .
Peter Mullinger & Barrie Jenkins. 2013. Industrial and Process Furnaces. Industrial and Process Furnaces 377 413 .
A. Parente, C. Galletti & L. Tognotti. (2011) A simplified approach for predicting NO formation in MILD combustion of CH4–H2 mixtures. Proceedings of the Combustion Institute 33:2, pages 3343-3350.
Crossref
Steve Londerville. 2010. Industrial Combustion Testing. Industrial Combustion Testing.
Francisco Cadavid, Bernardo Herrera & Andrés Amell. (2010) Numerical simulation of the flow streams behavior in a self-regenerative crucible furnace. Applied Thermal Engineering 30:8-9, pages 826-832.
Crossref
Lei Peng & Jian Zhang. (2009) Simulation of turbulent combustion and NO formation in a swirl combustor. Chemical Engineering Science 64:12, pages 2903-2914.
Crossref
Akwasi A. Boateng. 2008. Rotary Kilns. Rotary Kilns 129 171 .
Peter Mullinger & Barrie Jenkins. 2008. Industrial and Process Furnaces. Industrial and Process Furnaces 375 411 .
A. Habibi, B. Merci & G. J. Heynderickx. (2007) Multiscale modeling of turbulent combustion and NOx emission in steam crackers. AIChE Journal 53:9, pages 2384-2398.
Crossref
Nozomu Hashimoto, Ryoichi Kurose, Hirofumi Tsuji & Hiromi Shirai. (2007) A Numerical Analysis of Pulverized Coal Combustion in a Multiburner Furnace. Energy & Fuels 21:4, pages 1950-1958.
Crossref
Weihong Yang & Wlodzimierz Blasiak. (2005) Numerical simulation of properties of a LPG flame with high-temperature air. International Journal of Thermal Sciences 44:10, pages 973-985.
Crossref
G. Löffler, R. Sieber, M. Harasek, H. Hofbauer, R. Hauss & J. Landauf. (2005) NO x Formation in Natural Gas CombustionEvaluation of Simplified Reaction Schemes for CFD Calculations . Industrial & Engineering Chemistry Research 44:17, pages 6622-6633.
Crossref
Lei-Yong Jiang & Ian Campbell. (2005) A Critical Evaluation of NOx Modeling in a Model Combustor. Journal of Engineering for Gas Turbines and Power 127:3, pages 483-491.
Crossref
Weihong Yang & Wlodzimierz Blasiak. (2005) Mathematical modelling of NO emissions from high-temperature air combustion with nitrous oxide mechanism. Fuel Processing Technology 86:9, pages 943-957.
Crossref
Ryoichi Kurose, Hisao Makino & Akira Suzuki. (2004) Numerical analysis of pulverized coal combustion characteristics using advanced low-NOx burner. Fuel 83:6, pages 693-703.
Crossref
Cheikh Mansour, Abdelhamid Bounif, Abdelkader Aris & Françoise Gaillard. (2001) Gas–Diesel (dual-fuel) modeling in diesel engine environment. International Journal of Thermal Sciences 40:4, pages 409-424.
Crossref
T. Ishii, C. Zhang, & S. Sugiyama. (2000) Effects of NO Models on the Prediction of NO Formation in a Regenerative Furnace. Journal of Energy Resources Technology 122:4, pages 224-228.
Crossref
Benoit Bédat, Fokion N Egolfopoulos & Thierry Poinsot. (1999) Direct numerical simulation of heat release and NO x formation in turbulent nonpremixed flames. Combustion and Flame 119:1-2, pages 69-83.
Crossref
A.M. Eaton, L.D. Smoot, S.C. Hill & C.N. Eatough. (1999) Components, formulations, solutions, evaluation, and application of comprehensive combustion models. Progress in Energy and Combustion Science 25:4, pages 387-436.
Crossref
B.Scott Brewster, Steven M. Cannon, James R. Farmer & Fanli Meng. (1999) Modeling of lean premixed combustion in stationary gas turbines. Progress in Energy and Combustion Science 25:4, pages 353-385.
Crossref
M. Rovaglio, D. Manca & F. Rusconi. (1998) Supervisory control of a selective catalytic reactor for NOx removal in incineration plants. Waste Management 18:6-8, pages 525-538.
Crossref
M. Rovaglio, D. Manca & G. Biardi. (1998) Dynamic modeling of waste incineration plants with rotary kilns. Chemical Engineering Science 53:15, pages 2727-2742.
Crossref
S.P. Visona & B.R. Stanmore. (1998) Modelling NO formation in a swirling pulverized coal flame. Chemical Engineering Science 53:11, pages 2013-2027.
Crossref
S.M. Cannon, B.S. Brewster & L.D. Smoot. (1998) Stochastic Modeling of CO and NO in Premixed Methane Combustion. Combustion and Flame 113:1-2, pages 135-146.
Crossref
F. Ravet & L. Vervisch. (1998) Modeling non-premixed turbulent combustion in aeronautical engines using PDF-generator. Modeling non-premixed turbulent combustion in aeronautical engines using PDF-generator.
A. Uludogan, J. Xin & Rolf D. Reitz. Exploring the Use of Multiple Injectors and Split Injection to Reduce DI Diesel Engine Emissions. Exploring the Use of Multiple Injectors and Split Injection to Reduce DI Diesel Engine Emissions.
Gregory J. Hampson, Jun Xin, Yong Liu, Zhiyu Han & Rolf D. Reitz. Modeling of NOx Emissions with Comparison to Exhaust Measurements for a Gas Fuel Converted Heavy-Duty Diesel Engine. Modeling of NOx Emissions with Comparison to Exhaust Measurements for a Gas Fuel Converted Heavy-Duty Diesel Engine.
W. Chen, L. D. Smoot, S. C. Hill & T. H. Fletcher. (1996) Global Rate Expression for Nitric Oxide Reburning. Part 2. Energy & Fuels 10:5, pages 1046-1052.
Crossref
J.H.W. Lau. (1995) Comparison of Pdf and eddy-dissipation combustion models applied to a propane jet flame. Combustion and Flame 102:1-2, pages 209-215.
Crossref
R. Weber, A. A. F. Peters, P. P. Breithaupt & B. M. Visser. (1995) Mathematical Modeling of Swirling Flames of Pulverized Coal: What Can Combustion Engineers Expect From Modeling?. Journal of Fluids Engineering 117:2, pages 289-297.
Crossref
M. Rovaglio, D. Manca, G. Biardi & J. Falcon. (1994) Dynamic modeling of waste incineration systems: A startup procedure. Computers & Chemical Engineering 18, pages S361-S368.
Crossref
Craig T. Bowman. (1992) Control of combustion-generated nitrogen oxide emissions: Technology driven by regulation. Symposium (International) on Combustion 24:1, pages 859-878.
Crossref
Pradheepram Ottikkutti, Jon Van Gerpen & Ke Run Cui. Multizone Modeling of a Fumigated Diesel Engine. Multizone Modeling of a Fumigated Diesel Engine.
P. S. Pak & Y. Suzuki. (1989) Evaluation of thermal NOx emission characteristics of high efficiency gas turbines using refuse-recovered low BTU gases. International Journal of Energy Research 13:6, pages 649-659.
Crossref
P. S. Pak & Y. Suzuki. (1989) Low NOx emission characteristics of refuse-recovered low BTU gases as fuel for high efficiency gas turbines. International Journal of Energy Research 13:1, pages 53-61.
Crossref
G. A. Szekely & A. C. Alkidas. A Two-Stage Heat-Release Model for Diesel Engines. A Two-Stage Heat-Release Model for Diesel Engines.
N.A. Al-Dabbagh, G.E. Andrews & R. Manorharan. (1985) Shear Layer Mixing for Low Emission Gas Turbine Primary Zones. International Journal of Turbo and Jet Engines 2:3.
Crossref
Geoff J. Germane, Carl G. Wood & Clay C. Hess. Lean Combustion in Spark-Ignited Internal Combustion Engines - A Review. Lean Combustion in Spark-Ignited Internal Combustion Engines - A Review.
Alex R. Sapre & Ather A. Quader. Conversion of Fuel Nitrogen to NO in Automotive Engines. Conversion of Fuel Nitrogen to NO in Automotive Engines.
J. W. Mitchell & J. M. Tarbell. (2004) A kinetic model of nitric oxide formation during pulverized coal combustion. AIChE Journal 28:2, pages 302-311.
Crossref
E. H. James. Errors in NO Emission Prediction from Spark Ignition Engines. Errors in NO Emission Prediction from Spark Ignition Engines.
Muhammed Ibreighith & Paul Roth. (1980) NO-Bildung hinter angetriebenen Detonationswellen. Forschung im Ingenieurwesen 46:6, pages 173-181.
Crossref
John B. McVeyJan B. Kennedy. (1980) Lean Stability Augmentation for Premixing, Prevaporizing Combustors. Journal of Energy 4:1, pages 32-38.
Crossref
L.S. CARETTO. 1979. Energy and Combustion Science. Energy and Combustion Science 49 73 .
CRAIG T. BOWMAN. 1979. Energy and Combustion Science. Energy and Combustion Science 35 47 .
G. G. Lucas, M. Brunt & S. Petrovic. Lean Mixture Running of the Spark Ignition Engine by the Generation of a Vortex System within the Intake. Lean Mixture Running of the Spark Ignition Engine by the Generation of a Vortex System within the Intake.
M.M.M. Abou Ellail, A.D. Gosman, F.C. Lockwood & I.E.A. Megahed. (1978) Description and Validation of a Three-Dimensional Procedure for Combustion Chamber Flows. Journal of Energy 2:2, pages 71-80.
Crossref
J.M. Tarbell & C.A. Petty. (1977) Combustion modifications for the control of NOx emissions. Chemical Engineering Science 32:10, pages 1177-1188.
Crossref
H. C. Watson, L. C. Goldsworthy & E. E. Milkins. Cycle by Cycle Variations of HC, CO, and NOX. Cycle by Cycle Variations of HC, CO, and NOX.
H. F. Nelson. (1976) Nitric oxide formation in combustion. AIAA Journal 14:9, pages 1177-1182.
Crossref
J.H. Ay & M. Sichel. (1976) Theoretical analysis of NO formation near the primary reaction zone in methane combustion. Combustion and Flame 26, pages 1-15.
Crossref
L.S. Caretto. (1976) Mathematical modeling of pollutant formation. Progress in Energy and Combustion Science 1:2-3, pages 47-71.
Crossref
Richard L. Gay, Wen S. Young & Eldon L. Knuth. (1975) Reply to comment of D. J. Seery and C. T. Bowman. Combustion and Flame 25, pages 399-400.
Crossref
Richard L. Gay, Wen S. Young & Eldon L. Knuth. (1975) Molecular beam sampling of H2CO and NO in one-atmosphere methane-air flames. Combustion and Flame 24, pages 391-400.
Crossref
Craig T. Bowman. (1975) Kinetics of pollutant formation and destruction in combustion. Progress in Energy and Combustion Science 1:1, pages 33-45.
Crossref
Richard C. Flagan, Serge Galant & John P. Appleton. (1974) Rate constrained partial equilibrium models for the formation of nitric oxide from organic fuel nitrogen. Combustion and Flame 22:3, pages 299-311.
Crossref
J.B. Homer & M.M. Sutton. (1973) Nitric oxide formation and radical overshoot in premixed hydrogen flames. Combustion and Flame 20:1, pages 71-76.
Crossref
M.P. Heap, T.M. Lowes & R. Walmsley. (1973) Emission of nitric oxide from large turbulentdiffusion flames. Symposium (International) on Combustion 14:1, pages 883-895.
Crossref
L.S. Caretto. (1973) Modeling pollutant formation in combustion processes. Symposium (International) on Combustion 14:1, pages 803-817.
Crossref
C. T. Bowman & D. J. Seery. 1972. Emissions from Continuous Combustion Systems. Emissions from Continuous Combustion Systems 123 139 .
Bartłomiej Hernik & Joanna Wnorowska. (2021) Numerical Research on Combustion Processes and Deposit Formation on the Deposition Probe in the Pulverized Drop Chamber. SSRN Electronic Journal.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.