71
Views
44
CrossRef citations to date
0
Altmetric
Original Articles

Observations of Extinction and Marginal Burning States in Free Burning Porous Fuel Beds

Pages 179-193 | Received 29 Oct 1984, Accepted 01 Feb 1985, Published online: 21 May 2007

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (1)

W.R. CATCHPOLE, E.A. CATCHPOLE, B.W. BUTLER, R. C. ROTHERMEL, G. A. MORRIS & D. J. LATHAM. (1998) Rate of Spread of Free-Burning Fires in Woody Fuels in a Wind Tunnel. Combustion Science and Technology 131:1-6, pages 1-37.
Read now

Articles from other publishers (43)

K.-P. Wittich, C. Böttcher, P. Stammer & M. Herbst. (2023) Calculating fire danger of cured grasslands in temperate climates – the elements of the Grassland Fire Index (GLFI). International Journal of Wildland Fire 32:8, pages 1212-1225.
Crossref
Chang Chang, Yu Chang, Meng Guo & Yuanman Hu. (2023) Modelling the dead fuel moisture content in a grassland of Ergun City, China. Journal of Arid Land 15:6, pages 710-723.
Crossref
Assaf Shmuel, Yiftach Ziv & Eyal Heifetz. (2022) Machine-Learning-based evaluation of the time-lagged effect of meteorological factors on 10-hour dead fuel moisture content. Forest Ecology and Management 505, pages 119897.
Crossref
Miguel G. Cruz, N. Phillip Cheney, James S. Gould, W. Lachlan McCaw, Musa Kilinc & Andrew L. Sullivan. (2021) An empirical-based model for predicting the forward spread rate of wildfires in eucalypt forests. International Journal of Wildland Fire 31:1, pages 81-95.
Crossref
Carmine Maffei, Roderik Lindenbergh & Massimo Menenti. (2021) Combining multi-spectral and thermal remote sensing to predict forest fire characteristics. ISPRS Journal of Photogrammetry and Remote Sensing 181, pages 400-412.
Crossref
Carmen Awad, Nicolas Frangieh, Thierry Marcelli, Gilbert Accary, Dominique Morvan, Sofiane Meradji, François Joseph Chatelon & Jean Louis Rossi. (2021) Numerical study of the moisture content threshold under prescribed burning conditions. Fire Safety Journal 122, pages 103324.
Crossref
Sinta Haryati Silviana, Ahmad Muhammad, Haris Gunawan & Imam Basuki. (2021) Analysis of Fire Catchers in Sago Palm Smallholding Plantations on Peatland in Tebing Tinggi Timur, Kepulauan Meranti District, Riau Province. Jurnal Ilmu Pertanian Indonesia 26:2, pages 209-212.
Crossref
Li Zhao, Marta Yebra, Albert I.J.M. van Dijk, Geoffrey J. Cary, Stuart Matthews & Gary Sheridan. (2021) The influence of soil moisture on surface and sub-surface litter fuel moisture simulation at five Australian sites. Agricultural and Forest Meteorology 298-299, pages 108282.
Crossref
Carmen Awad, Dominique Morvan, Jean-Louis Rossi, Thierry Marcelli, François Joseph Chatelon, Fréderic Morandini & Jacques-Henri Balbi. (2020) Fuel moisture content threshold leading to fire extinction under marginal conditions. Fire Safety Journal 118, pages 103226.
Crossref
Scott M. Ritter, Chad M. Hoffman, Mike A. Battaglia, Camille S. Stevens‐Rumann & William E. Mell. (2020) Fine‐scale fire patterns mediate forest structure in frequent‐fire ecosystems. Ecosphere 11:7.
Crossref
Carlos G Rossa & Paulo M Fernandes. (2018) Empirical Modeling of Fire Spread Rate in No-Wind and No-Slope Conditions. Forest Science 64:4, pages 358-370.
Crossref
Miguel G. Cruz, Martin E. Alexander, Andrew L. Sullivan, James S. Gould & Musa Kilinc. (2018) Assessing improvements in models used to operationally predict wildland fire rate of spread. Environmental Modelling & Software 105, pages 54-63.
Crossref
Philip Gibbons, A. Malcolm Gill, Nicholas Shore, Max A. Moritz, Stephen Dovers & Geoffrey J. Cary. (2018) Options for reducing house-losses during wildfires without clearing trees and shrubs. Landscape and Urban Planning 174, pages 10-17.
Crossref
Alen Slijepcevic, Wendy R. Anderson, Stuart Matthews & David H. Anderson. (2018) An analysis of the effect of aspect and vegetation type on fine fuel moisture content in eucalypt forest. International Journal of Wildland Fire 27:3, pages 190.
Crossref
Guenther Carlos Krieger Filho, Paulo Bufacchi, José Carlos Santos, Carlos Alberto Gurgel Veras, Ernesto C. Alvarado, William Mell & João Andrade CarvalhoJr.Jr.. (2017) Probability of surface fire spread in Brazilian rainforest fuels from outdoor experimental measurements. European Journal of Forest Research 136:2, pages 217-232.
Crossref
Matthew B. Dickinson, Todd F. Hutchinson, Mark Dietenberger, Frederick Matt & Matthew P. Peters. (2016) Litter Species Composition and Topographic Effects on Fuels and Modeled Fire Behavior in an Oak-Hickory Forest in the Eastern USA. PLOS ONE 11:8, pages e0159997.
Crossref
Ritaban Dutta, Aruneema Das & Jagannath Aryal. (2016) Big data integration shows Australian bush-fire frequency is increasing significantly. Royal Society Open Science 3:2, pages 150241.
Crossref
David R. Weise, Eunmo Koo, Xiangyang Zhou, Shankar Mahalingam, Frédéric Morandini & Jacques-Henri Balbi. (2016) Fire spread in chaparral – a comparison of laboratory data and model predictions in burning live fuels. International Journal of Wildland Fire 25:9, pages 980.
Crossref
Ehsan H. Chowdhury & Quazi K. Hassan. (2015) Operational perspective of remote sensing-based forest fire danger forecasting systems. ISPRS Journal of Photogrammetry and Remote Sensing 104, pages 224-236.
Crossref
Miguel G. Cruz, Jim S. Gould, Susan Kidnie, Rachel Bessell, David Nichols & Alen Slijepcevic. (2015) Effects of curing on grassfires: II. Effect of grass senescence on the rate of fire spread. International Journal of Wildland Fire 24:6, pages 838.
Crossref
Robert E. KeaneRobert E. Keane. 2015. Wildland Fuel Fundamentals and Applications. Wildland Fuel Fundamentals and Applications 71 82 .
Ritaban Dutta, Jagannath Aryal, Aruneema Das & Jamie B. Kirkpatrick. (2013) Deep cognitive imaging systems enable estimation of continental-scale fire incidence from climate data. Scientific Reports 3:1.
Crossref
Dominique Morvan. (2013) Numerical study of the effect of fuel moisture content (FMC) upon the propagation of a surface fire on a flat terrain. Fire Safety Journal 58, pages 121-131.
Crossref
M.B. DickinsonE.A. JohnsonR. Artiaga. (2013) Fire spread probabilities for experimental beds composed of mixedwood boreal forest fuels. Canadian Journal of Forest Research 43:4, pages 321-330.
Crossref
D. X. Viegas, J. Soares & M. Almeida. (2013) Combustibility of a mixture of live and dead fuel components. International Journal of Wildland Fire 22:7, pages 992.
Crossref
R. L. Kremens, M. B. Dickinson & A. S. Bova. (2012) Radiant flux density, energy density and fuel consumption in mixed-oak forest surface fires. International Journal of Wildland Fire 21:6, pages 722.
Crossref
Marc Macias Fauria, Sean T. Michaletz & Edward A. Johnson. (2010) Predicting climate change effects on wildfires requires linking processes across scales. WIREs Climate Change 2:1, pages 99-112.
Crossref
A. P. Dimitrakopoulos, I. D. Mitsopoulos & K. Gatoulas. (2010) Assessing ignition probability and moisture of extinction in a Mediterranean grass fuel. International Journal of Wildland Fire 19:1, pages 29.
Crossref
A. Àgueda, S. Liodakis, E. Pastor & E. Planas. (2009) Characterization of the thermal degradation and heat of combustion of Pinus halepensis needles treated with ammonium-polyphosphate-based retardants. Journal of Thermal Analysis and Calorimetry 98:1, pages 235-243.
Crossref
Ana Daría Ruiz González, Jose Antonio Vega Hidalgo & Juan Gabriel Álvarez González. (2009) Construction of empirical models for predicting Pinus sp. dead fine fuel moisture in NW Spain. I: Response to changes in temperature and relative humidity. International Journal of Wildland Fire 18:1, pages 71.
Crossref
Mark A. CochraneMark A. Cochrane & Kevin C. Ryan. 2009. Tropical Fire Ecology. Tropical Fire Ecology 25 62 .
Paulo M. FernandesHermínio BotelhoFrancisco RegoCarlos Loureiro. (2008) Using fuel and weather variables to predict the sustainability of surface fire spread in maritime pine stands. Canadian Journal of Forest Research 38:2, pages 190-201.
Crossref
Matt P. Plucinski & Wendy R. Anderson. (2008) Laboratory determination of factors influencing successful point ignition in the litter layer of shrubland vegetation. International Journal of Wildland Fire 17:5, pages 628.
Crossref
Steven I. Higgins, William J. Bond, Winston S. W. Trollope & Richard J. Williams. (2008) Physically motivated empirical models for the spread and intensity of grass fires. International Journal of Wildland Fire 17:5, pages 595.
Crossref
W. Matt Jolly. (2007) Sensitivity of a surface fire spread model and associated fire behaviour fuel models to changes in live fuel moisture. International Journal of Wildland Fire 16:4, pages 503.
Crossref
Bachisio Arca, P. Duce, M. Laconi, G. Pellizzaro, M. Salis & D. Spano. (2007) Evaluation of FARSITE simulator in Mediterranean maquis. International Journal of Wildland Fire 16:5, pages 563.
Crossref
Xiangyang Zhou, Shankar Mahalingam & David Weise. (2005) Modeling of marginal burning state of fire spread in live chaparral shrub fuel bed. Combustion and Flame 143:3, pages 183-198.
Crossref
X. Zhou, S. Mahalingam & David Weise. (2005) Experimental Modeling Of The Effect Of Terrain Slope On Marginal Burning. Fire Safety Science 8, pages 863-874.
Crossref
David R. Weise, Xiangyang Zhou, Lulu Sun & Shankar Mahalingam. (2005) Fire spread in chaparral—'go or no-go?'. International Journal of Wildland Fire 14:1, pages 99.
Crossref
Xiangyang Zhou, David Weise & Shankar Mahalingam. (2005) Experimental measurements and numerical modeling of marginal burning in live chaparral fuel beds. Proceedings of the Combustion Institute 30:2, pages 2287-2294.
Crossref
Ertugrul Bilgili & Bülent Saglam. (2003) Fire behavior in maquis fuels in Turkey. Forest Ecology and Management 184:1-3, pages 201-207.
Crossref
Paulo A. Martins Fernandes. (2001) Fire spread prediction in shrub fuels in Portugal. Forest Ecology and Management 144:1-3, pages 67-74.
Crossref
Tom Beer & I.G. Enting. (1990) Fire spread and percolation modelling. Mathematical and Computer Modelling 13:11, pages 77-96.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.