136
Views
25
CrossRef citations to date
0
Altmetric
Original Articles

A Simplified Reaction Scheme for the Combustion of Hydrogen Enriched Methane/Air Flame

&
Pages 371-389 | Received 21 Sep 1987, Published online: 06 Apr 2007

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (1)

E. SHER & Y. HACOHEN. (1989) Ignition Delay and Combustion Duration in H2-Enriched Gasoline SI Engines. Combustion Science and Technology 65:4-6, pages 263-275.
Read now

Articles from other publishers (24)

Jacopo Liberatori, Riccardo Malpica Galassi, Daniele Bianchi, Francesco Nasuti, Mauro Valorani & Pietro Paolo Ciottoli. (2024) Family of Skeletal Reaction Mechanisms for Methane–Oxygen Combustion in Rocket Propulsion. Journal of Propulsion and Power 40:2, pages 303-319.
Crossref
A. Moroshkina, E. Yakupov, V. Mislavskii, E. Sereshchenko, A. Polezhaev, S. Minaev, V. Gubernov & V. Bykov. (2024) The performance of reaction mechanism in prediction of the characteristics of the diffusive-thermal oscillatory instability of methane–hydrogen–air burner-stabilized flames. Acta Astronautica 215, pages 496-504.
Crossref
Anastasia Moroshkina, Alina Ponomareva, Vladimir Mislavskii, Evgeniy Sereshchenko, Vladimir Gubernov, Viatcheslav Bykov & Sergey Minaev. (2024) Activation Energy of Hydrogen–Methane Mixtures. Fire 7:2, pages 42.
Crossref
Fengying Long, Yulong Duan, Shuwei Yu, Hailin Jia, Yunbing Bu & Jun Huang. (2022) Effect of porous materials on explosion characteristics of low ratio hydrogen/methane mixture in barrier tube. Journal of Loss Prevention in the Process Industries 80, pages 104875.
Crossref
Rongxue Shang, Zixuan Zhuang, Yue Yang & Gang Li. (2022) Laminar flame speed of H2/CH4/air mixtures with CO2 and N2 dilution. International Journal of Hydrogen Energy 47:75, pages 32315-32329.
Crossref
Pragya Berwal, Saran Solagar & Sudarshan Kumar. (2022) Experimental investigations on laminar burning velocity variation of CH4+H2+air mixtures at elevated temperatures. International Journal of Hydrogen Energy 47:37, pages 16686-16697.
Crossref
Jinzhang Jia, Yinuo Chen, Guangbo Che, Jinchao Zhu, Fengxiao Wang & Peng Jia. (2021) Experimental study on the explosion characteristics of hydrogen-methane premixed gas in complex pipe networks. Scientific Reports 11:1.
Crossref
Niklas Zettervall, Christer Fureby & Elna J. K. Nilsson. (2021) Evaluation of Chemical Kinetic Mechanisms for Methane Combustion: A Review from a CFD Perspective. Fuels 2:2, pages 210-240.
Crossref
Carlos Herce, Ana González-Espinosa, Antonia Gil, Cristóbal Cortés, Jesús González-Rebordinos, Teresa Guégués, Miguel Gil, Laura Ferré, Francisco Brunet & Alfred Arias. (2020) Combustion monitoring in an industrial cracking furnace based on combined CFD and optical techniques. Fuel 280, pages 118502.
Crossref
Fekadu Mosisa Wako, Gianmaria Pio & Ernesto Salzano. (2020) The Effect of Hydrogen Addition on Low-Temperature Combustion of Light Hydrocarbons and Alcohols. Energies 13:15, pages 3808.
Crossref
Justin Davis, Kartik Tiwari & Igor Novosselov. (2019) Soot morphology and nanostructure in complex flame flow patterns via secondary particle surface growth. Fuel 245, pages 447-457.
Crossref
Abhishek Kaluri, Philip Malte & Igor Novosselov. (2018) Real-time prediction of lean blowout using chemical reactor network. Fuel 234, pages 797-808.
Crossref
E. Fedina, C. Fureby, G. Bulat & W. Meier. (2017) Assessment of Finite Rate Chemistry Large Eddy Simulation Combustion Models. Flow, Turbulence and Combustion 99:2, pages 385-409.
Crossref
Hai-Bin He, Dong-Wei Yao & Feng Wu. (2017) A reduced and optimized kinetic mechanism for coke oven gas as a clean alternative vehicle fuel清洁车用代用燃料焦炉气化学反应机理的简化与优化. Journal of Zhejiang University-SCIENCE A 18:7, pages 511-530.
Crossref
A. Larsson, N. Zettervall, T. Hurtig, E. J. K. Nilsson, A. Ehn, P. Petersson, M. Alden, J. Larfeldt & C. Fureby. (2017) Skeletal Methane–Air Reaction Mechanism for Large Eddy Simulation of Turbulent Microwave-Assisted Combustion. Energy & Fuels 31:2, pages 1904-1926.
Crossref
R.A. Varella, J.C. Sagás & C.A. Martins. (2016) Effects of plasma assisted combustion on pollutant emissions of a premixed flame of natural gas and air. Fuel 184, pages 269-276.
Crossref
A. Ehn, J.J. Zhu, P. Petersson, Z.S. Li, M. Aldén, C. Fureby, T. Hurtig, N. Zettervall, A. Larsson & J. Larfeldt. (2015) Plasma assisted combustion: Effects of O3 on large scale turbulent combustion studied with laser diagnostics and Large Eddy Simulations. Proceedings of the Combustion Institute 35:3, pages 3487-3495.
Crossref
G. Bulat, E. Fedina, C. Fureby, W. Meier & U. Stopper. (2015) Reacting flow in an industrial gas turbine combustor: LES and experimental analysis. Proceedings of the Combustion Institute 35:3, pages 3175-3183.
Crossref
Zayed Al-Hamamre & Jehad Yamin. (2013) The effect of hydrogen addition on premixed laminar acetylene–hydrogen–air and ethanol–hydrogen–air flames. International Journal of Hydrogen Energy 38:18, pages 7499-7509.
Crossref
N. Slavinskaya, M. Braun-Unkhoff & P. Frank. (2008) Reduced Reaction Mechanisms for Methane and Syngas Combustion in Gas Turbines. Journal of Engineering for Gas Turbines and Power 130:2.
Crossref
V. Di Sarli & A. Di Benedetto. (2007) Laminar burning velocity of hydrogen–methane/air premixed flames. International Journal of Hydrogen Energy 32:5, pages 637-646.
Crossref
Alison S. Tomlin, Tamás Turányi & Michael J. Pilling. 1997. Low-Temperature Combustion and Autoignition. Low-Temperature Combustion and Autoignition 293 437 .
S. Refael & E. Sher. (1991) Autoignition of hydrogen-enriched n-butane-air mixture: A theoretical study. Symposium (International) on Combustion 23:1, pages 1789-1796.
Crossref
S. Refael & E. Sher. (1989) Reaction kinetics of hydrogen-enriched methaneair and propaneair flames. Combustion and Flame 78:3-4, pages 326-338.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.