256
Views
139
CrossRef citations to date
0
Altmetric
Original Articles

Pdf Modeling of Turbulent Nonpremixed Methane Jet Flames

, &
Pages 315-346 | Received 23 Jan 1989, Accepted 07 Apr 1989, Published online: 29 Mar 2007

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (23)

Pei Zhang, Assaad R. Masri & Haifeng Wang. (2017) Studies of the flow and turbulence fields in a turbulent pulsed jet flame using LES/PDF. Combustion Theory and Modelling 21:5, pages 897-924.
Read now
Hongtao Yang, Zhuyin Ren, Tianfeng Lu & GrahamM. Goldin. (2013) Dynamic adaptive chemistry for turbulent flame simulations. Combustion Theory and Modelling 17:1, pages 167-183.
Read now
DavidH. Rowinski & StephenB. Pope. (2011) PDF calculations of piloted premixed jet flames. Combustion Theory and Modelling 15:2, pages 245-266.
Read now
Varun Hiremath, Zhuyin Ren & StephenB. Pope. (2010) A greedy algorithm for species selection in dimension reduction of combustion chemistry. Combustion Theory and Modelling 14:5, pages 619-652.
Read now
WILLIAM VICENTE∗, MARTÍN SALINAS, ESTEBAN BARRIOS & CÉSAR DOPAZO. (2004) PDF MODELING OF CO AND NO FORMATION IN LEAN PREMIXED METHANE FLAMES. Combustion Science and Technology 176:4, pages 585-601.
Read now
NORBERTO FUEYO, WILLIAM VICENTE, JAVIER BLASCO & CÉSAR DOPAZO. (2000) Stochastic Simulation of NO Formation in Lean Premixed Methane Flames. Combustion Science and Technology 153:1, pages 295-311.
Read now
J Blasco, N Fueyo, C Dopazo & J-Y Chen. (2000) A self-organizing-map approach to chemistry representation in combustion applications. Combustion Theory and Modelling 4:1, pages 61-76.
Read now
T. HULEK & R.P. LINDSTEDT. (1998) Joint Scalar-velocity pdf Modelling of Finite Rate Chemistry in a Scalar Mixing Layer. Combustion Science and Technology 136:1-6, pages 303-331.
Read now
J.-Y. CHEN & W.-C. CHANG. (1998) Modeling Differential Diffusion Effects in Turbulent Nonreacting/Reacting Jets with Stochastic Mixing Models. Combustion Science and Technology 133:4-6, pages 343-375.
Read now
W. P. JONES & M. KAKHI. (1997) Application of the Transported pdf Approach to Hydrocarbon-Air Turbulent Jet Diffusion Flames. Combustion Science and Technology 129:1-6, pages 393-430.
Read now
B. MARRACINO & D. LENTINI. (1997) Radiation Modelling in Non-Luminous Nonpremixed Turbulent Flames. Combustion Science and Technology 128:1-6, pages 23-48.
Read now
CHANGMING LIAO, ZHINING LIU, XIAOQING ZHENG & CHAOQUN LIU. (1996) NOx Prediction in 3-D Turbulent Diffusion Flames by Using Implicit Multigrid Methods. Combustion Science and Technology 119:1-6, pages 219-260.
Read now
J.-Y. CHEN, W.-C. CHANG & M. KOSZYKOWSKI. (1995) Numerical Simulation and Scaling of NOx Emissions from Turbulent Hydrogen Jet Flames with Various Amounts of Helium Dilution. Combustion Science and Technology 110-111:1, pages 505-529.
Read now
Y. ZHANG, B. ROGG & K. N. C. BRAY. (1995) 2-D Simulation of Turbulent Autoignition with Transient Laminar Flamelet Source Term Closure. Combustion Science and Technology 105:4-6, pages 211-227.
Read now
WILLIAMJ. PITZ, CHARLESK. WESTBROOK, ANDREWE. LUTZ, ROBERTJ. KEE, SELIM SENKAN & JAMESG. SEEBOLD. (1994) Numerical Modeling Capabilities for the Simulation of Toxic By-Products Formation in Combustion Processes. Combustion Science and Technology 101:1-6, pages 383-396.
Read now
A. COPPALLE & D. JOYEUX. (1993) Experimental and Theoretical Studies on Soot Formation in an Ethylene Jet Flame. Combustion Science and Technology 93:1, pages 375-386.
Read now
J. Y. CHEN, T. KAISER & W. KOLLMANN. (1993) Transient Behavior of Simplified Reaction Mechanisms for Methane Nonpremixed Combustion. Combustion Science and Technology 92:4-6, pages 313-347.
Read now
M. Sion & J.-Y. Chen. (1993) Scalar Pdf Modeling of Turbulent Nonpremixed Methanol-Air Flames. Combustion Science and Technology 88:1-2, pages 89-114.
Read now
J.-Y. CHEN. (1991) Reduced Reaction Mechanisms for Methanol-Air Diffusion Flames. Combustion Science and Technology 78:1-3, pages 127-145.
Read now

Articles from other publishers (116)

Thomas Readshaw, Lucas L.C. Franke, W.P. Jones & Stelios Rigopoulos. (2023) Simulation of turbulent premixed flames with machine learning - tabulated thermochemistry. Combustion and Flame 258, pages 113058.
Crossref
Xi Chen, Cédric Mehl, Thibault Faney & Florent Di Meglio. (2023) Clustering-Enhanced Deep Learning Method for Computation of Full Detailed Thermochemical States via Solver-Based Adaptive Sampling. Energy & Fuels 37:18, pages 14222-14239.
Crossref
Haifeng Wang & Shashank Kashyap. (2023) Multi-regime mixing modeling for local extinction and re-ignition in turbulent non-premixed flame by using LES/FDF method. Flow, Turbulence and Combustion 111:1, pages 211-234.
Crossref
Thomas Readshaw, W. P. Jones & Stelios Rigopoulos. (2023) On the incorporation of conservation laws in machine learning tabulation of kinetics for reacting flow simulation. Physics of Fluids 35:4.
Crossref
Shubhangi Bansude, Farhad Imani & Reza Sheikhi. (2023) Performance Assessment of Chemical Kinetics Neural Ordinary Differential Equations in Pairwise Mixing Stirred Reactor. ASME Open Journal of Engineering 2.
Crossref
Jian An, Fei Qin, Jian Zhang & Zhuyin Ren. (2022) Explore artificial neural networks for solving complex hydrocarbon chemistry in turbulent reactive flows. Fundamental Research 2:4, pages 595-603.
Crossref
Majid Haghshenas, Peetak Mitra, Niccolò Dal Santo & David P. Schmidt. (2021) Acceleration of Chemical Kinetics Computation with the Learned Intelligent Tabulation (LIT) Method. Energies 14:23, pages 7851.
Crossref
Tianjie Ding, Thomas Readshaw, Stelios Rigopoulos & W.P. Jones. (2021) Machine learning tabulation of thermochemistry in turbulent combustion: An approach based on hybrid flamelet/random data and multiple multilayer perceptrons. Combustion and Flame 231, pages 111493.
Crossref
Cheng Chi, Gábor Janiga & Dominique Thévenin. (2021) On-the-fly artificial neural network for chemical kinetics in direct numerical simulations of premixed combustion. Combustion and Flame 226, pages 467-477.
Crossref
Thomas Readshaw, Tianjie Ding, Stelios Rigopoulos & W. P. Jones. (2021) Modeling of turbulent flames with the large eddy simulation–probability density function (LES–PDF) approach, stochastic fields, and artificial neural networks. Physics of Fluids 33:3.
Crossref
Jian An, Guoqiang He, Kaihong Luo, Fei Qin & Bing Liu. (2020) Artificial neural network based chemical mechanisms for computationally efficient modeling of hydrogen/carbon monoxide/kerosene combustion. International Journal of Hydrogen Energy 45:53, pages 29594-29605.
Crossref
Yinghua Zhai, Sen Li, Weiping Yan, Xiaolin Wei, Leyu Zhang & Youtian Wang. (2019) Effects of water vapor and temperature on NOx and CO emissions during converter gas combustion. Fuel 256, pages 115914.
Crossref
J. Wu, G. Dong & Y. Li. (2018) Parallel chemistry acceleration algorithm with ISAT table-size control in the application of gaseous detonation. Shock Waves 29:4, pages 523-535.
Crossref
Martin Rieth, Jyh-Yuan Chen, Suresh Menon & Andreas M. Kempf. (2019) A hybrid flamelet finite-rate chemistry approach for efficient LES with a transported FDF. Combustion and Flame 199, pages 183-193.
Crossref
Jintao Wu, Gang Dong & Baoming Li. (2018) Parallel chemistry acceleration algorithms based on ISAT method in gaseous detonation computations. Computers & Fluids 167, pages 265-284.
Crossref
Lucas L.C. Franke, Athanasios K. Chatzopoulos & Stelios Rigopoulos. (2017) Tabulation of combustion chemistry via Artificial Neural Networks (ANNs): Methodology and application to LES-PDF simulation of Sydney flame L. Combustion and Flame 185, pages 245-260.
Crossref
Payam Sinaei & Sadegh Tabejamaat. (2016) Large eddy simulation of methane diffusion jet flame with representation of chemical kinetics using artificial neural network. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 231:2, pages 147-163.
Crossref
Anurag Sharma & Bimlesh Kumar. (2017) Probability distribution functions of turbulence in seepage-affected alluvial channel. Fluid Dynamics Research 49:1, pages 015508.
Crossref
Nicolas Jaouen, Luc Vervisch, Pascale Domingo & Guillaume Ribert. (2017) Automatic reduction and optimisation of chemistry for turbulent combustion modelling: Impact of the canonical problem. Combustion and Flame 175, pages 60-79.
Crossref
Oluwayemisi O. Oluwole, Zhuyin Ren, Christophe Petre & Graham Goldin. (2015) Decoupled Species and Reaction Reduction: An error-controlled method for Dynamic Adaptive Chemistry simulations. Combustion and Flame 162:5, pages 1934-1943.
Crossref
Abolfazl Irannejad, Araz Banaeizadeh & Farhad Jaberi. (2015) Large eddy simulation of turbulent spray combustion. Combustion and Flame 162:2, pages 431-450.
Crossref
ZhuYin Ren, Zhen Lu, LingYun Hou & LiuYan Lu. (2014) Numerical simulation of turbulent combustion: Scientific challenges. Science China Physics, Mechanics & Astronomy 57:8, pages 1495-1503.
Crossref
Zhuyin Ren, Chao Xu, Tianfeng Lu & Michael A. Singer. (2014) Dynamic adaptive chemistry with operator splitting schemes for reactive flow simulations. Journal of Computational Physics 263, pages 19-36.
Crossref
Zhuyin Ren, Yufeng Liu, Tianfeng Lu, Liuyan Lu, Oluwayemisi O. Oluwole & Graham M. Goldin. (2014) The use of dynamic adaptive chemistry and tabulation in reactive flow simulations. Combustion and Flame 161:1, pages 127-137.
Crossref
Francesco Contino, Fabrice Foucher, Philippe Dagaut, Tommaso Lucchini, Gianluca D’Errico & Christine Mounaïm-Rousselle. (2013) Experimental and numerical analysis of nitric oxide effect on the ignition of iso-octane in a single cylinder HCCI engine. Combustion and Flame 160:8, pages 1476-1483.
Crossref
ZhiJun Zhou, Yu Lü, ZhiHua Wang, YanWei Xu, JunHu Zhou & KeFa Cen. (2012) Systematic method of applying ANN for chemical kinetics reduction in turbulent premixed combustion modeling. Chinese Science Bulletin 58:4-5, pages 486-492.
Crossref
Zhenrong Yan, Xiaoming Luo, Jinqing Wang & Liping Geng. (2012) Characteristics of Flow Field in Pulverized-Coal Burner with Bluff Body of Low Load. Characteristics of Flow Field in Pulverized-Coal Burner with Bluff Body of Low Load.
Varun Hiremath, Zhuyin Ren & Stephen B. Pope. (2011) Combined dimension reduction and tabulation strategy using ISAT–RCCE–GALI for the efficient implementation of combustion chemistry. Combustion and Flame 158:11, pages 2113-2127.
Crossref
Pradeep Jha & Clinton Groth. (2011) Parallel Solution Adaptive Scheme for Three-Dimensional Turbulent Diffusion Flames with Detailed Tabulated Chemistry. Parallel Solution Adaptive Scheme for Three-Dimensional Turbulent Diffusion Flames with Detailed Tabulated Chemistry.
Predeep Jha & Clinton Groth. (2011) Parallel Adaptive Mesh Renment Scheme with Presumed Conditional Moment and FPI Tabulated Chemistry for Turbulent Non-Premixed Combustion. Parallel Adaptive Mesh Renment Scheme with Presumed Conditional Moment and FPI Tabulated Chemistry for Turbulent Non-Premixed Combustion.
E. Amani & M.R.H. Nobari. (2010) An efficient PDF calculation of flame temperature and major species in turbulent non-premixed flames. Applied Mathematical Modelling 34:8, pages 2223-2241.
Crossref
D.C. Haworth. (2010) Progress in probability density function methods for turbulent reacting flows. Progress in Energy and Combustion Science 36:2, pages 168-259.
Crossref
Baris Ali Sen & Suresh Menon. (2010) Linear eddy mixing based tabulation and artificial neural networks for large eddy simulations of turbulent flames. Combustion and Flame 157:1, pages 62-74.
Crossref
N. S. Mehdizadeh & P. Sinaei. (2016) Modelling methane-air turbulent diffusion flame in a gas turbine combustor with artifical neural network. The Aeronautical Journal 113:1146, pages 541-547.
Crossref
Liuyan Lu, Steven R. Lantz, Zhuyin Ren & Stephen B. Pope. (2009) Computationally efficient implementation of combustion chemistry in parallel PDF calculations. Journal of Computational Physics 228:15, pages 5490-5525.
Crossref
Stephen B. Pope & Zhuyin Ren. (2008) Efficient Implementation of Chemistry in Computational Combustion. Flow, Turbulence and Combustion 82:4, pages 437-453.
Crossref
Baris A. Sen & Suresh Menon. (2009) Turbulent premixed flame modeling using artificial neural networks based chemical kinetics. Proceedings of the Combustion Institute 32:1, pages 1605-1611.
Crossref
S. A. Ferraris & J. X. Wen. (2008) LES of the Sandia Flame D Using Laminar Flamelet Decomposition for Conditional Source-Term Estimation. Flow, Turbulence and Combustion 81:4, pages 609-639.
Crossref
Ming Jia, Maozhao Xie & Zhijun Peng. Implementation and Improvement of ISAT in HCCI Multidimensional Modeling with Detailed Chemical Kinetics. Implementation and Improvement of ISAT in HCCI Multidimensional Modeling with Detailed Chemical Kinetics.
Biswanath Panda, Mirek Riedewald, Johannes Gehrke & Stephen B. Pope. (2007) High-Speed Function Approximation. High-Speed Function Approximation.
Heinz Pitsch. (2006) LARGE-EDDY SIMULATION OF TURBULENT COMBUSTION. Annual Review of Fluid Mechanics 38:1, pages 453-482.
Crossref
. 2006. Technische Verbrennung. Technische Verbrennung 329 372 .
P. D. Iedema & N. H. Kolhapure. 2005. Handbook of Polymer Reaction Engineering. Handbook of Polymer Reaction Engineering 431 532 .
Haifeng Wang & Yiliang Chen. (2004) PDF modelling of turbulent non-premixed combustion with detailed chemistry. Chemical Engineering Science 59:16, pages 3477-3490.
Crossref
G Cerri, V Michelassi, S Monacchia & S Pica. (2005) Kinetic combustion neural modelling integrated into computational fluid dynamics. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 217:2, pages 185-192.
Crossref
S. Repp, A. Sadiki, C. Schneider, A. Hinz, T. Landenfeld & J. Janicka. (2002) Prediction of swirling confined diffusion flame with a Monte Carlo and a presumed-PDF-model. International Journal of Heat and Mass Transfer 45:6, pages 1271-1285.
Crossref
R.P. Lindstedt & S.A. Louloudi. (2002) Joint scalar transported probability density function modeling of turbulent methanol jet diffusion flames. Proceedings of the Combustion Institute 29:2, pages 2147-2154.
Crossref
Qing Tang & Stephen B. Pope. (2002) Implementation of combustion chemistry by in situ adaptive tabulation of rate-controlled constrained equilibrium manifolds. Proceedings of the Combustion Institute 29:1, pages 1411-1417.
Crossref
. 2002. Fundamentals and Technology of Combustion. Fundamentals and Technology of Combustion 779 834 .
S. James, M. S. Anand, M. K. Razdan & S. B. Pope. (2001) In Situ Detailed Chemistry Calculations in Combustor Flow Analyses. Journal of Engineering for Gas Turbines and Power 123:4, pages 747-756.
Crossref
Jürgen Warnatz, Ulrich Maas & Robert W. DibbleJürgen Warnatz, Ulrich Maas & Robert W. Dibble. 2001. Combustion. Combustion 273 288 .
P. Jenny, S.B. Pope, M. Muradoglu & D.A. Caughey. (2001) A Hybrid Algorithm for the Joint PDF Equation of Turbulent Reactive Flows. Journal of Computational Physics 166:2, pages 218-252.
Crossref
S. James & F.A. Jaberi. (2000) Large scale simulations of two-dimensional nonpremixed methane jet flames. Combustion and Flame 123:4, pages 465-487.
Crossref
Jun Xu & Stephen B. Pope. (2000) PDF calculations of turbulent nonpremixed flames with local extinction. Combustion and Flame 123:3, pages 281-307.
Crossref
H. Pitsch & H. Steiner. (2000) Large-eddy simulation of a turbulent piloted methane/air diffusion flame (Sandia flame D). Physics of Fluids 12:10, pages 2541-2554.
Crossref
R P Lindstedt. (2005) The modelling of direct chemical kinetic effects in turbulent flames. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 214:3, pages 177-189.
Crossref
R.P. Lindstedt, S.A. Louloudi & E.M. Váos. (2000) Joint scalar probability density function modeling of pollutant formation in piloted turbulent jet diffusion flames with comprehensive chemistry. Proceedings of the Combustion Institute 28:1, pages 149-156.
Crossref
J.-Y. Chen, J.A. Blasco, N. Fueyo & C. Dopazo. (2000) An economical strategy for storage of chemical kinetics: Fitting in situ adaptive tabulation with artificial neural networks. Proceedings of the Combustion Institute 28:1, pages 115-121.
Crossref
J.A Blasco, N Fueyo, J.C Larroya, C Dopazo & Y.-J Chen. (1999) A single-step time-integrator of a methane–air chemical system using artificial neural networks. Computers & Chemical Engineering 23:9, pages 1127-1133.
Crossref
S.M. Cannon, B.S. Brewster & L.D. Smoot. (1999) PDF modeling of lean premixed combustion using in situ tabulated chemistry. Combustion and Flame 119:3, pages 233-252.
Crossref
Minghou Xu, Yaoguo Fan & Jianwei Yuan. (1999) Simplification of the mechanism of NOx formation in a CH4/air combustion system. International Journal of Energy Research 23:14, pages 1267-1276.
Crossref
J Xu & S.B Pope. (1999) Assessment of Numerical Accuracy of PDF/Monte Carlo Methods for Turbulent Reacting Flows. Journal of Computational Physics 152:1, pages 192-230.
Crossref
V SAXENA & S POPE. (1999) PDF simulations of turbulent combustion incorporating detailed chemistry. Combustion and Flame 117:1-2, pages 340-350.
Crossref
Minghou Xu, Yaoguo Fan, Jianwei Yuan, Changdong Sheng & Hong Yao. (1999) A simplified fuel-NOx model based on regression analysis. International Journal of Energy Research 23:2, pages 157-168.
Crossref
P Koutmos. (1999) Simulations of turbulent methane jet diffusion flames with local extinction effects. Fluid Dynamics Research 24:2, pages 103-119.
Crossref
Jürgen Warnatz, Ulrich Maas & Robert W. DibbleJürgen Warnatz, Ulrich Maas & Robert W. Dibble. 1999. Combustion. Combustion 273 288 .
W.P. Jones & M. Kakhi. (1998) Pdf Modeling of Finite-rate Chemistry Effects in Turbulent Nonpremixed Jet Flames. Combustion and Flame 115:1-2, pages 210-229.
Crossref
J.A. Blasco, N. Fueyo, C. Dopazo & J. Ballester. (1998) Modelling the Temporal Evolution of a Reduced Combustion Chemical System With an Artificial Neural Network. Combustion and Flame 113:1-2, pages 38-52.
Crossref
M.M. Tacke, S. Linow, S. Geiss, E.P. Hassel, J. Janicka & J.Y. Chen. (1998) Experimental and numerical study of a highly diluted turbulent diffusion flame close to blowout. Symposium (International) on Combustion 27:1, pages 1139-1148.
Crossref
R.S. Barlow & J.H. Frank. (1998) Effects of turbulence on species mass fractions in methane/air jet flames. Symposium (International) on Combustion 27:1, pages 1087-1095.
Crossref
Vivek Saxena & Stephen B. Pope. (1998) PDF calculations of major and minor species in a turbulent piloted jet flame. Symposium (International) on Combustion 27:1, pages 1081-1086.
Crossref
Z. Wang & J.‐Y. Chen. (1997) Modeling of microscale turbulence and chemistry interaction in near‐field aircraft plumes. Journal of Geophysical Research: Atmospheres 102:D11, pages 12871-12883.
Crossref
Anil K. Tolpadi, Sanjay M. Correa, David L. Burrus & Hukam C. Mongia. (1997) Monte Carlo Probability Density Function Method for Gas Turbine Combustor Flowfield Predictions. Journal of Propulsion and Power 13:2, pages 218-225.
Crossref
R. Armstrong, P. Wyckoff, C. Yam, M. Bui-Pham & N. Brown. (1997) Frame-based components for generalized particle methods. Frame-based components for generalized particle methods.
Douglas A. Feikema, David Everest & James F. Driscoll. (1996) Images of dissipation layers to quantify mixing within a turbulent jet. AIAA Journal 34:12, pages 2531-2538.
Crossref
Kuochen Tsai & Rodney O. Fox. (2004) PDF modeling of turbulent‐mixing effects on initiator efficiency in a tubular LDPE reactor. AIChE Journal 42:10, pages 2926-2940.
Crossref
S. M. Correa, I. Z. Hu & A. K. Tolpadi. (1996) Combustion Technology for Low-Emissions Gas-Turbines: Some Recent Modeling Results. Journal of Energy Resources Technology 118:3, pages 201-208.
Crossref
A.R. Masri, R.W. Dibble & R.S. Barlow. (1996) The structure of turbulent nonpremixed flames revealed by Raman-Rayleigh-LIF measurements. Progress in Energy and Combustion Science 22:4, pages 307-362.
Crossref
Iris . Hu & Sanjay M. Correa. (1996) Calculations of turbulent flames using a PSR microstructural library. Symposium (International) on Combustion 26:1, pages 307-313.
Crossref
W.P. Jones & Y. Prasetyo. (1996) Probability density function modeling of premixed turbulent opposed jet flames. Symposium (International) on Combustion 26:1, pages 275-282.
Crossref
R.S. Barlow, G.J. Fiechtner & J.-Y. Chen. (1996) Oxygen atom concentrations and no production rates in a turbulent H2/N2 jet flame. Symposium (International) on Combustion 26:2, pages 2199-2205.
Crossref
W. P. Jones & M. Kakhi. 1996. Unsteady Combustion. Unsteady Combustion 411 491 .
Jürgen Warnatz, Ulrich Maas & Robert W. DibbleJürgen Warnatz, Ulrich Maas & Robert W. Dibble. 1996. Combustion. Combustion 245 256 .
D. Lentini & I.K. Puri. (1995) Stretched laminar flamelet modeling of turbulent chloromethane-air nonpremixed jet flames. Combustion and Flame 103:4, pages 328-338.
Crossref
Sanjay M. Correa. (1995) A direct comparison of pair-exchange and IEM models in premixed combustion. Combustion and Flame 103:3, pages 194-206.
Crossref
Changming Liao, Zhining Liu, Xiaoqing Zheng & Chaoqun Liu. (1995) NO(x), prediction in 3D turbulent diffusion flames by using implicit multigrid methods. NO(x), prediction in 3D turbulent diffusion flames by using implicit multigrid methods.
Anil Tolpadi, Sanjay Correa, David Burrus & Hukam Mongia. (1995) A Monte Carlo PDF method for the calculation of gas turbine combustor flow fields. A Monte Carlo PDF method for the calculation of gas turbine combustor flow fields.
Sanjay M. Correa. (1995) Assessment of a three-variable reduced kinetic scheme in prescribed turbulence. Journal of Propulsion and Power 11:3, pages 448-455.
Crossref
Sanjay M. Correa. (1994) Models for high-intensity turbulent combustion. Computing Systems in Engineering 5:2, pages 135-145.
Crossref
Sanjay M. Correa, Anil Gulati & Stephen B. Pope. (1994) Raman measurements and joint PDF modeling of a nonpremixed bluff-body-stabilized methane flame. Symposium (International) on Combustion 25:1, pages 1167-1173.
Crossref
M. Obounou, M. Gonzalez & R. Borghi. (1994) A lagrangian model for predicting turbulent diffusion flames with chemical kinetic effects. Symposium (International) on Combustion 25:1, pages 1107-1113.
Crossref
Wolfgang Kollmann, Ian M. Kennedy, Mario Metternich & J.-Y. Chen. 1994. Soot Formation in Combustion. Soot Formation in Combustion 503 526 .
S.M. Correa & M.E. Braaten. (1993) Parallel simulations of partially stirred methane combustion. Combustion and Flame 94:4, pages 469-486.
Crossref
S.M. Correa. (1993) Turbulence-chemistry interactions in the intermediate regime of premixed combustion. Combustion and Flame 93:1-2, pages 41-60.
Crossref
A. R. Masri, R. W. Dibble & R. S. Barlow. (2005) Raman–Rayleigh scattering measurements in reacting and non‐reacting dilute two‐phase flows. Journal of Raman Spectroscopy 24:2, pages 83-89.
Crossref
A.R. Masri, R.W. Dibble & R.S. Barlow. (1992) Chemical kinetic effects in nonpremixed flames of H2/CO2 fuel. Combustion and Flame 91:3-4, pages 285-309.
Crossref
J.-Y. Chen & W. Kollmann. (1992) PDF modeling and analysis of thermal NO formation in turbulent nonpremixed hydrogen-air jet flames. Combustion and Flame 88:3-4, pages 397-412.
Crossref
M. SION & J.-Y. CHEN. (1992) Pdf modeling of a turbulent nonpremixed methanol-air flame. Pdf modeling of a turbulent nonpremixed methanol-air flame.
K.N. Lakshmisha, Y. Zhang, B. Rogg & K.N.C. Bray. (1992) Modelling auto-ignition in a turbulent medium. Symposium (International) on Combustion 24:1, pages 421-428.
Crossref
S.M. Correa & S.B. Pope. (1992) Comparison of a monte carlo pdf/finite-volume mean flow model with bluff-body raman data. Symposium (International) on Combustion 24:1, pages 279-285.
Crossref
D. Roekaerts. (1992) Monte Carlo PDF method for turbulent reacting flow in a jet-stirred reactor. Computers & Fluids 21:1, pages 97-108.
Crossref
Paul A. Libby. 1992. Major Research Topics in Combustion. Major Research Topics in Combustion 423 436 .
W. Kollmann & J.-Y. Chen. 1992. Major Research Topics in Combustion. Major Research Topics in Combustion 359 402 .
D. Roekaerts. (1991) Use of a Monte Carlo PDF method in a study of the influence of turbulent fluctuations on selectivity in a jet-stirred reactor. Applied Scientific Research 48:3-4, pages 271-300.
Crossref
M. METTERNICH, W. KOLLMANN, I. KENNEDY & J.-Y. CHEN. (1991) pdf prediction of sooting turbulent flames. pdf prediction of sooting turbulent flames.
Robert S. Barlow. (1991) Multispecies Raman scattering combines with molecular fluorescence. Multispecies Raman scattering combines with molecular fluorescence.
J.-Y. Chen, R.W. Dibble & R.W. Bilger. (1991) PDF modeling of turbulent nonpremixed CO/H2/N2 jet flames with reduced mechanisms. Symposium (International) on Combustion 23:1, pages 775-780.
Crossref
F. Mauß, D. Keller & N. Peters. (1991) A lagrangian simulation of flamelet extinction and re-ignition in turbulent jet diffusion flames. Symposium (International) on Combustion 23:1, pages 693-698.
Crossref
S.B. Pope. (1991) Computations of turbulent combustion: Progress and challenges. Symposium (International) on Combustion 23:1, pages 591-612.
Crossref
J. -Y. Chen & R. W. Dibble. 1991. Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane-Air Flames. Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane-Air Flames 193 226 .
D. Roekaerts. 1991. Computational Fluid Dynamics for the Petrochemical Process Industry. Computational Fluid Dynamics for the Petrochemical Process Industry 61 90 .
C. H. Priddin. 1991. Advances in Turbulence 3. Advances in Turbulence 3 279 299 .
J.-Y. Chen & W. Kollmann. 1991. Turbulent Shear Flows 7. Turbulent Shear Flows 7 277 292 .
A.R. Masri & S.B. Pope. (1990) PDF calculations of piloted turbulent nonpremixed flames of methane. Combustion and Flame 81:1, pages 13-29.
Crossref
W. Kollmann. (1990) The pdf approach to turbulent flow. Theoretical and Computational Fluid Dynamics 1:5, pages 249-285.
Crossref
Shubhangi Bansude, Farhad Imani & Reza Sheikhi. (2022) A Data-Driven Framework for Computationally Efficient Integration of Chemical Kinetics Using Neural Ordinary Differential Equations. SSRN Electronic Journal.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.