127
Views
75
CrossRef citations to date
0
Altmetric
Original Articles

Models for Gasless Combustion in Layered Materials and Random Media

Pages 155-174 | Received 28 Dec 1989, Accepted 29 Jan 1990, Published online: 27 Apr 2007

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (3)

L. Wang, B. He & X. H. Jiang. (2010) Modeling the Velocity of Self-Propagating Exothermic Reactions in Multilayer Foils. Combustion Science and Technology 182:8, pages 1000-1008.
Read now
John J Granier & Michelle L Pantoya. (2004) The effect of size distribution on burn rate in nanocomposite thermites: a probability density function study. Combustion Theory and Modelling 8:3, pages 555-565.
Read now
E. A. NEKRASOV, V N. TKACHENKO & A. E. ZAKIROV. (1993) Diffusive Combustion of Multi-Component Gasless Systems Forming Multi-Phase Products. Combustion Science and Technology 91:4-6, pages 207-223.
Read now

Articles from other publishers (72)

Michael J. Abere, Robert V. Reeves, Catherine Sobczak, Hyein Choi, Paul G. Kotula & David P. Adams. (2023) Effects of diffusion barriers on reaction wave stability in Co/Al reactive multilayers. Journal of Applied Physics 134:19.
Crossref
Kaveh Dargahi Noubary, Christian Schäfer, Christoph Pauly, Michael Kellner, Vincent Ott, Michael Stüber, Frank Mücklich & Britta Nestler. (2023) Microstructure evolution in the self-propagating reaction in Al/Ru bilayers by phase-field simulations and experiments. Journal of Vacuum Science & Technology A 41:4.
Crossref
Michael J. Abere, Robert V. Reeves, David E. Kittell, Catherine Sobczak & David P. Adams. (2023) Stability Criteria for Self-Propagating Reaction Waves in Co/Al Multilayers. ACS Applied Materials & Interfaces 15:17, pages 21210-21218.
Crossref
Yesenia H. Sauni Camposano, Heike Bartsch, Sebastian Matthes, Manuel Oliva-Ramirez, Konrad Jaekel & Peter Schaaf. (2023) Microstructural Characterization and Self‐Propagation Properties of Reactive Al/Ni Multilayers Deposited onto Wavelike Surface Morphologies: Influence on the Propagation Front Velocity. physica status solidi (a) 220:7.
Crossref
Yuan-Wei Chang, Kam-Heng Lam, Chien Chang, Hou-Ren Chen, Kuan-Wei Su & Yi-Chia Chou. (2022) Control of Large‐Scale Single‐Phase Ni Silicide Formation from Reactive Multilayers. Advanced Engineering Materials 24:12.
Crossref
D.E. Kittell, M.J. Abere, C.D. Yarrington & D.P. Adams. (2022) 3D simulations of spinlike flames in Co/Al multilayers with enhanced conduction losses. Combustion and Flame 240, pages 111952.
Crossref
Mostafa Baloochi, Deepshikha Shekhawat, Sascha Sebastian Riegler, Sebastian Matthes, Marcus Glaser, Peter Schaaf, Jean Pierre Bergmann, Isabella Gallino & Jörg Pezoldt. (2021) Influence of Initial Temperature and Convective Heat Loss on the Self-Propagating Reaction in Al/Ni Multilayer Foils. Materials 14:24, pages 7815.
Crossref
Altangerel Dulmaa & Diederik Depla. (2021) Influence of Impurities on the Front Velocity of Sputter Deposited Al/CuO Thermite Multilayers. Materials 14:23, pages 7224.
Crossref
Fabian Schwarz & Ralph Spolenak. (2021) Molecular dynamics study of the influence of microstructure on reaction front propagation in Al–Ni multilayers. Applied Physics Letters 119:13.
Crossref
K. Ryan Bratton, Connor Woodruff, Loudon L. Campbell, Ronald J. Heaps & Michelle L. Pantoya. (2020) A closer look at determining burning rates with imaging diagnostics. Optics and Lasers in Engineering 124, pages 105841.
Crossref
Mohammad Shabouei, Waad Subber, Cedric W. Williams, Karel Matouš & Joseph M. Powers. (2019) Chemo-thermal model and Gaussian process emulator for combustion synthesis of Ni/Al composites. Combustion and Flame 207, pages 153-170.
Crossref
Qingxuan Zeng, Tao Wang, Mingyu Li & Yangyang Ren. (2019) Mechanism and characteristics on the electric explosion of Al/Ni reactive multilayer foils. Applied Physics Letters 115:9.
Crossref
Walter W. Focke, Shepherd M. Tichapondwa, Yolandi C. Montgomery, Johannes M. Grobler & Michel L. Kalombo. (2018) Review of Gasless Pyrotechnic Time Delays. Propellants, Explosives, Pyrotechnics 44:1, pages 55-93.
Crossref
Florence Baras, Vladyslav Turlo, Olivier Politano, Sergey Georgievich Vadchenko, Alexander Sergeevich Rogachev & Alexander Sergeevich Mukasyan. (2018) SHS in Ni/Al Nanofoils: A Review of Experiments and Molecular Dynamics Simulations. Advanced Engineering Materials 20:8, pages 1800091.
Crossref
Michael J. Abere, Cole D. Yarrington & David P. Adams. (2018) Heating rate dependent ignition of Al/Pt nanolaminates through pulsed laser irradiation. Journal of Applied Physics 123:23.
Crossref
D. E. Kittell, C. D. Yarrington, M. L. Hobbs, M. J. Abere & D. P. Adams. (2018) A diffusion-limited reaction model for self-propagating Al/Pt multilayers with quench limits. Journal of Applied Physics 123:14.
Crossref
Georgios D. Theodossiadis & Michael F. Zaeh. (2017) Study of the heat affected zone within metals joined by using reactive multilayered aluminum–nickel nanofoils. Production Engineering 11:4-5, pages 401-408.
Crossref
Dylan K. Smith, Jesus Cano, Michelle L. Pantoya & Keerti Kappagantula. (2017) Thermal and Combustion Properties of Energetic Thin Films with Carbon Nanotubes. Journal of Thermophysics and Heat Transfer 31:3, pages 646-650.
Crossref
V. Turlo, O. Politano & F. Baras. (2017) Microstructure evolution and self-propagating reactions in Ni-Al nanofoils: An atomic-scale description. Journal of Alloys and Compounds 708, pages 989-998.
Crossref
C. D. Yarrington, M. J. Abere, D. P. Adams & M. L. Hobbs. (2017) Reactive nanolaminate pulsed-laser ignition mechanism: Modeling and experimental evidence of diffusion limited reactions. Journal of Applied Physics 121:13.
Crossref
Kelsey Meeks, Dylan K. Smith, Billy Clark & Michelle L. Pantoya. (2017) Percolation of a metallic binder in energy generating composites. Journal of Materials Chemistry A 5:15, pages 7200-7209.
Crossref
Nickolai M. Rubtsov, Boris S. Seplyarskii & Michail I. AlymovNickolai M. Rubtsov, Boris S. Seplyarskii & Michail I. Alymov. 2017. Ignition and Wave Processes in Combustion of Solids. Ignition and Wave Processes in Combustion of Solids 1 18 .
Christopher E. Shuck, Joshua M. Pauls & Alexander S. Mukasyan. (2016) Ni/Al Energetic Nanocomposites and the Solid Flame Phenomenon. The Journal of Physical Chemistry C 120:47, pages 27066-27078.
Crossref
V. Turlo, O. Politano & F. Baras. (2016) Modeling self-sustaining waves of exothermic dissolution in nanometric Ni-Al multilayers. Acta Materialia 120, pages 189-204.
Crossref
Michael D. Grapes & Timothy P. Weihs. (2016) Exploring the reaction mechanism in self-propagating Al/Ni multilayers by adding inert material. Combustion and Flame 172, pages 105-115.
Crossref
K. Woll, A. Bergamaschi, K. Avchachov, F. Djurabekova, S. Gier, C. Pauly, P. Leibenguth, C. Wagner, K. Nordlund & F. Mücklich. (2016) Ru/Al Multilayers Integrate Maximum Energy Density and Ductility for Reactive Materials. Scientific Reports 6:1.
Crossref
Billy R. Clark, Michelle L. Pantoya, Emily M. Hunt, Trent J. Kelly, Benton F. Allen, Ronald J. Heaps & Michael A. Daniels. (2015) Synthesis and characterization of flexible, free-standing, energetic thin films. Surface and Coatings Technology 284, pages 422-426.
Crossref
O. Politano & F. Baras. (2015) Molecular dynamics simulations of self-propagating reactions in Ni–Al multilayer nanofoils. Journal of Alloys and Compounds 652, pages 25-29.
Crossref
Kelsey A. Meeks, Billy R. Clark, Jesus E. Cano, Christopher A. Apblett & Michelle L. Pantoya. (2015) Effects of rheological properties on reactivity of energetic thin films. Combustion and Flame 162:9, pages 3288-3293.
Crossref
K. Woll, I. E. Gunduz, C. Pauly, C. C. Doumanidis, S. F. Son, C. Rebholz & F. Mücklich. (2015) Numerical modeling of self-propagating reactions in Ru/Al nanoscale multilayer foils. Applied Physics Letters 107:7.
Crossref
Keerti Kappagantula, Jesus Cano & Michelle Pantoya. (2015) Combustion Performance Improvement of Energetic Thin Films Using Carbon Nanotubes. Combustion Performance Improvement of Energetic Thin Films Using Carbon Nanotubes.
D.P. Adams. (2015) Reactive multilayers fabricated by vapor deposition: A critical review. Thin Solid Films 576, pages 98-128.
Crossref
Oliver Mulamba & Michelle Pantoya. 2014. Handbook of Fluoropolymer Science and Technology. Handbook of Fluoropolymer Science and Technology 363 376 .
Rong An, Yanhong Tian & Chunqing Wang. (2014) Effect of modulation structure on the laser-ignited self-propagating behavior of Ti/Al multilayer films. Effect of modulation structure on the laser-ignited self-propagating behavior of Ti/Al multilayer films.
Michelle Pantoya, Keerti Kappagantula & Cory Farley. 2014. Metal Nanopowders. Metal Nanopowders 279 300 .
Robert V. Reeves & David P. Adams. (2014) Reaction instabilities in Co/Al nanolaminates due to chemical kinetics variation over micron-scales. Journal of Applied Physics 115:4.
Crossref
T.P. Weihs. 2014. Metallic Films for Electronic, Optical and Magnetic Applications. Metallic Films for Electronic, Optical and Magnetic Applications 160 243 .
Kaitlynn Fisher, S. C. Barron, M. A. Bonds, R. Knepper, K. J. T. Livi, G. H. Campbell, N. D. Browning & T. P. Weihs. (2013) Phase transformations, heat evolution, and atomic diffusion during slow heating of Al-rich Al/Zr multilayered foils. Journal of Applied Physics 114:24.
Crossref
S. C. Barron, S. T. Kelly, J. Kirchhoff, R. Knepper, K. Fisher, K. J. T. Livi, E. M. Dufresne, K. Fezzaa, T. W. Barbee, T. C. Hufnagel & T. P. Weihs. (2013) Self-propagating reactions in Al/Zr multilayers: Anomalous dependence of reaction velocity on bilayer thickness. Journal of Applied Physics 114:22.
Crossref
Leen Alawieh, Timothy P. Weihs & Omar M. Knio. (2013) A generalized reduced model of uniform and self-propagating reactions in reactive nanolaminates. Combustion and Flame 160:9, pages 1857-1869.
Crossref
Leen Alawieh, Omar M. Knio & Timothy P. Weihs. (2011) Effect of thermal properties on self-propagating fronts in reactive nanolaminates. Journal of Applied Physics 110:1.
Crossref
Keerti S. Kappagantula, Billy Clark & Michelle L. Pantoya. (2011) Flame Propagation Experiments of Non-gas-Generating Nanocomposite Reactive Materials. Energy & Fuels 25:2, pages 640-646.
Crossref
A. S. Rogachev & A. S. Mukasyan. (2010) Combustion of heterogeneous nanostructural systems (Review). Combustion, Explosion, and Shock Waves 46:3, pages 243-266.
Crossref
Joel P. McDonald, Mark A. Rodriguez, Eric D. JonesJr.Jr. & David P. Adams. (2011) Rare-earth transition-metal intermetallic compounds produced via self-propagating, high-temperature synthesis. Journal of Materials Research 25:4, pages 718-727.
Crossref
D. P. Adams, M. A. Rodriguez, J. P. McDonald, M. M. Bai, E. JonesJr.Jr., L. Brewer & J. J. Moore. (2009) Reactive Ni/Ti nanolaminates. Journal of Applied Physics 106:9, pages 093505.
Crossref
Jan A. Puszynski. (2009) Processing and characterization of aluminum-based nanothermites. Journal of Thermal Analysis and Calorimetry 96:3, pages 677-685.
Crossref
Robert Knepper, Murray R. Snyder, Greg Fritz, Kaitlynn Fisher, Omar M. Knio & Timothy P. Weihs. (2009) Effect of varying bilayer spacing distribution on reaction heat and velocity in reactive Al/Ni multilayers. Journal of Applied Physics 105:8.
Crossref
Joel P. McDonald, Yoosuf N. Picard, Steven M. Yalisove & David P. Adams. (2009) Pulsed laser ignition thresholds of energetic multilayer foils. Pulsed laser ignition thresholds of energetic multilayer foils.
Yoosuf N. Picard, Joel P. McDonald, Thomas A. Friedmann, Steven M. Yalisove & David P. Adams. (2008) Nanosecond laser induced ignition thresholds and reaction velocities of energetic bimetallic nanolaminates. Applied Physics Letters 93:10.
Crossref
V. Eric Sanders, Blaine W. Asay, Timothy J. Foley, Bryce C. Tappan, Adam N. Pacheco & Steven F. Son. (2007) Reaction Propagation of Four Nanoscale Energetic Composites (Al/MoO3, Al/WO3, Al/CuO, and B12O3). Journal of Propulsion and Power 23:4, pages 707-714.
Crossref
Boris B. Khina. (2007) Modeling nonisothermal interaction kinetics in the condensed state: A diagram of phase formation mechanisms for the Ni–Al system. Journal of Applied Physics 101:6.
Crossref
Atsushi Makino. (2007) Heterogeneous flame propagation in the self-propagating high-temperature synthesis (SHS) process in multi-layer foils for three components system: Theory and experimental comparisons. Proceedings of the Combustion Institute 31:2, pages 1813-1820.
Crossref
Daniel Prentice, Michelle L. Pantoya & Alexander E. Gash. (2006) Combustion Wave Speeds of Sol−Gel-Synthesized Tungsten Trioxide and Nano-Aluminum:  The Effect of Impurities on Flame Propagation. Energy & Fuels 20:6, pages 2370-2376.
Crossref
S. Valliappan, J. Swiatkiewicz & J.A. Puszynski. (2005) Reactivity of aluminum nanopowders with metal oxides. Powder Technology 156:2-3, pages 164-169.
Crossref
B.B. Khina, B. Formanek & I. Solpan. (2005) Limits of applicability of the “diffusion-controlled product growth” kinetic approach to modeling SHS. Physica B: Condensed Matter 355:1-4, pages 14-31.
Crossref
John J. Granier & Michelle L. Pantoya. (2004) Laser ignition of nanocomposite thermites. Combustion and Flame 138:4, pages 373-383.
Crossref
Emily M Hunt, Keith B Plantier & Michelle L Pantoya. (2004) Nano-scale reactants in the self-propagating high-temperature synthesis of nickel aluminide. Acta Materialia 52:11, pages 3183-3191.
Crossref
Atushi Makino. (2003) Heterogeneous flame propagation in the self-propagating, high-temperature, synthesis (SHS) process in multi-layer foils: theory and experimental comparisons. Combustion and Flame 134:3, pages 273-288.
Crossref
Jan A. Puszynski. (2011) Reactivity of Nanosize Aluminum with Metal Oxides and Water Vapor. MRS Proceedings 800.
Crossref
John Granier & Michelle Pantoya. (2002) Modeling Laser Ignition and Heat Propagation in Nanocomposite Thermites. Modeling Laser Ignition and Heat Propagation in Nanocomposite Thermites.
A.A.M Oliveira & M Kaviany. (2001) Nonequilibrium in the transport of heat and reactants in combustion in porous media. Progress in Energy and Combustion Science 27:5, pages 523-545.
Crossref
A. Makino. (2001) Fundamental aspects of the heterogeneous flame in the self-propagating high-temperature synthesis (SHS) process. Progress in Energy and Combustion Science 27:1, pages 1-74.
Crossref
Atsushi Makino & C.K. Law. (2001) On the correspondence between the homogeneous and heterogeneous theories of SHS. Combustion and Flame 124:1-2, pages 268-274.
Crossref
S. Jayaraman, O. M. Knio, A. B. Mann & T. P. Weihs. (1999) Numerical predictions of oscillatory combustion in reactive multilayers. Journal of Applied Physics 86:2, pages 800-809.
Crossref
M.E. Reiss, C.M. Esber, D. Van Heerden, A.J. Gavens, M.E. Williams & T.P. Weihs. (1999) Self-propagating formation reactions in Nb/Si multilayers. Materials Science and Engineering: A 261:1-2, pages 217-222.
Crossref
A.A.M. Oliveira & M. Kaviany. (1999) Role of inter- and intraparticle diffusion in nonuniform particle size gasless compacted powder combustion synthesis—II: results and comparison with experiment. International Journal of Heat and Mass Transfer 42:6, pages 1075-1095.
Crossref
A.A.M. Oliveira & M. Kaviany. (1999) Role of inter- and intraparticle diffusion in nonuniform particle size gasless compacted-powder combustion synthesis—I: formulation. International Journal of Heat and Mass Transfer 42:6, pages 1059-1073.
Crossref
Swaminathan Jayaraman, Adrian B. Mann, Timothy P. Weihs & Omar M. Knio. (1998) A numerical study of unsteady self-propagating reactions in multilayer foils. Symposium (International) on Combustion 27:2, pages 2459-2467.
Crossref
Igor Filimonov. (1998) The effect of radiation on the combustion wave propagation in a heterogeneous system. Symposium (International) on Combustion 27:2, pages 2441-2450.
Crossref
A. B. Mann, A. J. Gavens, M. E. Reiss, D. Van Heerden, G. Bao & T. P. Weihs. (1997) Modeling and characterizing the propagation velocity of exothermic reactions in multilayer foils. Journal of Applied Physics 82:3, pages 1178-1188.
Crossref
Robert Armstrong. (1992) Theoretical models for the combustion of alloyable materials. Metallurgical Transactions A 23:9, pages 2339-2347.
Crossref
A. Makino & C.K. Law. (1992) Heterogeneous flame propagation in the self-propagating high-temperature synthesis (SHS) process: Theory and experimental comparisons. Symposium (International) on Combustion 24:1, pages 1883-1891.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.