159
Views
69
CrossRef citations to date
0
Altmetric
Original Articles

Decomposed Methanol as a Fuel—A review

&
Pages 265-303 | Received 17 May 1990, Accepted 07 Jun 1991, Published online: 06 Apr 2007

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (1)

Xiehe Yang, Wenfeng Shen, Yang Zhang, Hai Zhang, Junfu Lyu & Jiansheng Zhang. (2020) Improving the Prediction Accuracy of the Extinction of Stretched Methanol/Air Premixed Flames. Combustion Science and Technology 192:6, pages 1088-1107.
Read now

Articles from other publishers (68)

Javed Ahamad, Parmod Kumar & Atul Dhar. (2024) Effect of multi-injection strategy on characteristics of methanol-fueled direct injection spark ignition engine. Physics of Fluids 36:4.
Crossref
Kunpei TOMIOKA & Kunito OKUYAMA. (2023) Responsiveness of the Production of Synthesis Gas from Liquid Methanol Using a Packed Bed of Porous Particles多孔質粒子充填層を用いた液体メタノールからの合成ガス生成プロセスの応答性. JAPANESE JOURNAL OF MULTIPHASE FLOW 37:4, pages 412-420.
Crossref
Moshe Sheintuch, Olga Nekhamkina & Leonid Tartakovsky. (2023) Heat Recuperation from Internal Combustion Engines by Fuel Reforming: Kinetics-Based Analysis. ACS Engineering Au 3:3, pages 210-223.
Crossref
Diego Antonio Rodriguez-Pastor, Andrés Carro, Giuseppe Masci, Carlos Ortiz, Vittorio Verda & Ricardo Chacartegui. (2023) Conceptualizing novel CH3OH-based thermochemical energy storage routes via a modeling approach. Cell Reports Physical Science 4:4, pages 101357.
Crossref
Dmitry Pashchenko. (2023) Hydrogen-rich gas as a fuel for the gas turbines: A pathway to lower CO2 emission. Renewable and Sustainable Energy Reviews 173, pages 113117.
Crossref
Kanta ONOSE & Kunito OKUYAMA. (2023) Production of Synthesis Gas from Methanol Using Capillary Action in a Packed Bed充填層の毛管力を利用したメタノールからの合成ガスの生成. JAPANESE JOURNAL OF MULTIPHASE FLOW 37:1, pages 138-145.
Crossref
Dmitry Pashchenko. (2022) Low-grade heat utilization in the methanol-fired gas turbines through a thermochemical fuel transformation. Thermal Science and Engineering Progress 36, pages 101537.
Crossref
S. Tappertzhofen & R. Ahlmann. (2022) Anodic oxidation effects at the copper/silicon oxide interface. Memories - Materials, Devices, Circuits and Systems 1, pages 100004.
Crossref
Zhi Tian, Yang Wang, Xudong Zhen & Zengbin Liu. (2022) The effect of methanol production and application in internal combustion engines on emissions in the context of carbon neutrality: A review. Fuel 320, pages 123902.
Crossref
Yuan Fang, Hao Sun, Wei Peng, Qinghong Yuan & Chen Zhao. (2022) Effect of Surface [Cu 4 O] Moieties on the Activity of Cu-Based Catalysts . ACS Catalysis 12:9, pages 5162-5173.
Crossref
Amin Paykani, Hamed Chehrmonavari, Athanasios Tsolakis, Terry Alger, William F. Northrop & Rolf D. Reitz. (2022) Synthesis gas as a fuel for internal combustion engines in transportation. Progress in Energy and Combustion Science 90, pages 100995.
Crossref
Nıdhı CHAUDHARY & K. A. SUBRAMANİAN. (2022) Experimental Investigation of Combustion Characteristics of a Spark Ignition Engine Fueled with Methanol-Gasoline Blends (M15 and M85). International Journal of Automotive Science and Technology 6:1, pages 54-60.
Crossref
Bhavin K. Bharath & V. Arul Mozhi Selvan. (2021) Influence of Higher Alcohol Additives in Methanol–Gasoline Blends on the Performance and Emissions of an Unmodified Automotive SI Engine: A Review. Arabian Journal for Science and Engineering 46:8, pages 7057-7085.
Crossref
Rui V Afonso, José D Gouveia & José R B Gomes. (2021) Catalytic reactions for H 2 production on multimetallic surfaces: a review . Journal of Physics: Energy 3:3, pages 032016.
Crossref
Andy Thawko, Shalom-Adam Persy, Amnon Eyal & Leonid Tartakovsky. Effects of Fuel Injection Method on Energy Efficiency and Combustion Characteristics of SI Engine Fed with a Hydrogen-Rich Reformate. Effects of Fuel Injection Method on Energy Efficiency and Combustion Characteristics of SI Engine Fed with a Hydrogen-Rich Reformate.
Amnon Eyal & Leonid Tartakovsky. (2020) Second-law analysis of the reforming-controlled compression ignition. Applied Energy 263, pages 114622.
Crossref
A. Thawko, H. Yadav, A. Eyal, M. Shapiro & L. Tartakovsky. (2019) Particle emissions of direct injection internal combustion engine fed with a hydrogen-rich reformate. International Journal of Hydrogen Energy 44:52, pages 28342-28356.
Crossref
Fredrik B. Ekström, Ola Rolandson, Soren Eriksson, Christer Odenmarck, Mattias Svensson, Andreas Eriksson & Hans Olsen. A Mild Hybrid SIDI Turbo Passenger Car Engine with Organic Rankine Cycle Waste Heat Recovery. A Mild Hybrid SIDI Turbo Passenger Car Engine with Organic Rankine Cycle Waste Heat Recovery.
Amnon Eyal & Leonid Tartakovsky. Reforming-Controlled Compression Ignition - A Method Combining Benefits of Reactivity-Controlled Compression Ignition and High-Pressure Thermochemical Recuperation. Reforming-Controlled Compression Ignition - A Method Combining Benefits of Reactivity-Controlled Compression Ignition and High-Pressure Thermochemical Recuperation.
Kunito Okuyama, Kanoko Ichimi, Masato Takazawa, Asami Natori & Mikako Tanaka. (2019) Passive production of synthesis gas from liquid methanol using a packed bed of porous material particles. International Journal of Heat and Mass Transfer 128, pages 1017-1025.
Crossref
Yajie Liu, Shaojun Qing, Xiaoning Hou, Fajie Qin, Xiang Wang, Zhixian Gao & Hongwei Xiang. (2018) Cu−Ni−Al Spinel Oxide as an Efficient Durable Catalyst for Methanol Steam Reforming. ChemCatChem 10:24, pages 5698-5706.
Crossref
L. Tartakovsky & M. Sheintuch. (2018) Fuel reforming in internal combustion engines. Progress in Energy and Combustion Science 67, pages 88-114.
Crossref
A. Poran, A. Thawko, A. Eyal & L. Tartakovsky. (2018) Direct injection internal combustion engine with high-pressure thermochemical recuperation – Experimental study of the first prototype. International Journal of Hydrogen Energy 43:27, pages 11969-11980.
Crossref
Ali Dehghani, Maryam Ranjbar & Ali Eliassi. (2018) Modification of Cu/Zn/Al2O3 Catalyst by Activated Carbon Based Metal Organic Frameworks as Precursor for Hydrogen Production. Journal of Inorganic and Organometallic Polymers and Materials 28:3, pages 585-593.
Crossref
Leonid Tartakovsky. (2018) High-pressure thermo-chemical recuperation – a way toward sustainable propulsion systems. Procedia Manufacturing 21, pages 37-44.
Crossref
Duc-Khanh Nguyen & Sebastian Verhelst. (2017) Computational Study of the Laminar Reaction Front Properties of Diluted Methanol–Air Flames Enriched by the Fuel Reforming Product. Energy & Fuels 31:9, pages 9991-10002.
Crossref
A. Poran & L. Tartakovsky. (2017) Influence of methanol reformate injection strategy on performance, available exhaust gas enthalpy and emissions of a direct-injection spark ignition engine. International Journal of Hydrogen Energy 42:23, pages 15652-15668.
Crossref
Albert Casanovas, Núria J. Divins, Alberto Rejas, Ricard Bosch & Jordi Llorca. (2017) Finding a suitable catalyst for on-board ethanol reforming using exhaust heat from an internal combustion engine. International Journal of Hydrogen Energy 42:19, pages 13681-13690.
Crossref
Duc-Khanh Nguyen & Sebastian Verhelst. Development of Laminar Burning Velocity Correlation for the Simulation of Methanol Fueled SI Engines Operated with Onboard Fuel Reformer. Development of Laminar Burning Velocity Correlation for the Simulation of Methanol Fueled SI Engines Operated with Onboard Fuel Reformer.
A. Poran & L. Tartakovsky. (2017) Performance and emissions of a direct injection internal combustion engine devised for joint operation with a high-pressure thermochemical recuperation system. Energy 124, pages 214-226.
Crossref
Amnon Eyal & Leonid Tartakovsky. Reforming Controlled Homogenous Charge Compression Ignition -Simulation Results. Reforming Controlled Homogenous Charge Compression Ignition -Simulation Results.
Xiaoning Hou, Shaojun Qing, Yajie Liu, Hongjuan Xi, Tianfu Wang, Xiang Wang & Zhixian Gao. (2016) Reshaping CuO on silica to generate a highly active Cu/SiO 2 catalyst . Catalysis Science & Technology 6:16, pages 6311-6319.
Crossref
Arnon Poran & Leonid Tartakovsky. (2015) Energy efficiency of a direct-injection internal combustion engine with high-pressure methanol steam reforming. Energy 88, pages 506-514.
Crossref
Ahmad Omari, Michael Shapiro & Leonid Tartakovsky. Laminar Burning Velocity of Alcohol Reforming Products and Effects of Cellularity on Flame Propagation. Laminar Burning Velocity of Alcohol Reforming Products and Effects of Cellularity on Flame Propagation.
Leonid Tartakovsky, Vladimir Baibikov, Marcel Gutman, Arnon Poran & Mark Veinblat. (2014) Thermo-Chemical Recuperation as an Efficient Way of Engine's Waste Heat Recovery. Applied Mechanics and Materials 659, pages 256-261.
Crossref
J.B. Greenwood, P.A. Erickson, J. Hwang & E.A. Jordan. (2014) Experimental results of hydrogen enrichment of ethanol in an ultra-lean internal combustion engine. International Journal of Hydrogen Energy 39:24, pages 12980-12990.
Crossref
Qin Zhang, Guozhu Liu, Li Wang, Xiangwen Zhang & Guozhu Li. (2014) Controllable Decomposition of Methanol for Active Fuel Cooling Technology. Energy & Fuels 28:7, pages 4431-4439.
Crossref
Arnon Poran, Moris Artoul, Moshe Sheintuch & Leonid Tartakovsky. (2014) Modeling Internal Combustion Engine with Thermo-Chemical Recuperation of the Waste Heat by Methanol Steam Reforming. SAE International Journal of Engines 7:1, pages 234-242.
Crossref
Osman Sinan Süslü & Ipek Becerik. (2014) Determination of Syngas Premixed Gasoline and Methanol Combustion Products at Chemical Equilibrium via Lagrange Multipliers Method. Energy & Fuels 28:3, pages 2076-2091.
Crossref
S. Verhelst. (2014) Recent progress in the use of hydrogen as a fuel for internal combustion engines. International Journal of Hydrogen Energy 39:2, pages 1071-1085.
Crossref
Eva Sarkadi-Priboczki & Tanya Tsoncheva. (2011) 11C-Radiolabeling study of methanol decomposition on chromium modified SBA-15 silica. Journal of Porous Materials 19:5, pages 705-711.
Crossref
Tanya Tsoncheva, Jan Roggenbuck, Daniela Paneva, Momtchil Dimitrov, Ivan Mitov & Michael Fröba. (2010) Nanosized iron and chromium oxides supported on mesoporous CeO2 and SBA-15 silica: Physicochemical and catalytic study. Applied Surface Science 257:2, pages 523-530.
Crossref
Mette Mikkelsen, Mikkel Jørgensen & Frederik C. Krebs. (2010) The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ. Sci. 3:1, pages 43-81.
Crossref
Loredana De Rogatis & Paolo Fornasiero. 2009. Catalysis for Sustainable Energy Production. Catalysis for Sustainable Energy Production 171 233 .
Tanya Tsoncheva, Jessica Rosenholm, Mika Linden, Freddy Kleitz, Michael Tiemann, Ljubomira Ivanova, Momtchil Dimitrov, Daniela Paneva, Ivan Mitov & Christo Minchev. (2008) Critical evaluation of the state of iron oxide nanoparticles on different mesoporous silicas prepared by an impregnation method. Microporous and Mesoporous Materials 112:1-3, pages 327-337.
Crossref
Tanya Tsoncheva, Jan Roggenbuck, Michael Tiemann, Lyubomira Ivanova, Daniela Paneva, Ivan Mitov & Christo Minchev. (2008) Iron oxide nanoparticles supported on mesoporous MgO and CeO2: A comparative physicochemical and catalytic study. Microporous and Mesoporous Materials 110:2-3, pages 339-346.
Crossref
T Tsoncheva, S Vankova, O Bozhkov & D Mehandjiev. (2007) Rhenium and manganese modified activated carbon as catalyst for methanol decomposition. Canadian Journal of Chemistry 85:2, pages 118-123.
Crossref
Tanya Tsoncheva, Jessica Rosenholm, Mika Linden, Lyubomira Ivanova & Christo Minchev. (2007) Iron and copper oxide modified SBA-15 materials as catalysts in methanol decomposition: Effect of copolymer template removal. Applied Catalysis A: General 318, pages 234-243.
Crossref
E. Manova, T. Tsoncheva, D. Paneva, J.L. Rehspringer, K. Tenchev, I. Mitov & L. Petrov. (2007) Synthesis, characterization and catalytic properties of nanodimensional nickel ferrite/silica composites. Applied Catalysis A: General 317:1, pages 34-42.
Crossref
Víctor A. de la Peña O’Shea, M. Consuelo Álvarez‐Galván, José M. Campos‐Martin, Nieves N. Menéndez, Jesús D. Tornero & José L. G. Fierro. (2006) Surface and Structural Features of Co‐Fe Oxide Nanoparticles Deposited on a Silica Substrate. European Journal of Inorganic Chemistry 2006:24, pages 5057-5068.
Crossref
Tanya Tsoncheva, Momtchil Dimitrov, Ljubomira Ivanova, Daniela Paneva, Dimitar Mitev, Boiko Tsintsarski, Ivan Mitov, Stavri Stavrev & Christo Minchev. (2006) Iron oxide modified diamond blends containing ultradispersed diamond. Journal of Colloid and Interface Science 300:1, pages 183-189.
Crossref
E. Manova, T. Tsoncheva, Cl. Estournès, D. Paneva, K. Tenchev, I. Mitov & L. Petrov. (2006) Nanosized iron and iron–cobalt spinel oxides as catalysts for methanol decomposition. Applied Catalysis A: General 300:2, pages 170-180.
Crossref
T. Tsoncheva, S. Vankova, O. Bozhkov & D. Mehandjiev. (2005) Effect of rhenium on copper supported on activated carbon catalysts for methanol decomposition. Journal of Molecular Catalysis A: Chemical 225:2, pages 245-251.
Crossref
E. Manova, T. Tsoncheva, D. Paneva, I. Mitov, K. Tenchev & L. Petrov. (2004) Mechanochemically synthesized nano-dimensional iron–cobalt spinel oxides as catalysts for methanol decomposition. Applied Catalysis A: General 277:1-2, pages 119-127.
Crossref
D Paneva, T Tsoncheva, E Manova, I Mitov & T Ruskov. (2004) Phase composition and catalytic properties in methanol decomposition of iron–ruthenium modified activated carbon. Applied Catalysis A: General 267:1-2, pages 67-75.
Crossref
T Tsoncheva, Tz Venkov, M Dimitrov, C Minchev & K Hadjiivanov. (2004) Copper-modified mesoporous MCM-41 silica: FTIR and catalytic study. Journal of Molecular Catalysis A: Chemical 209:1-2, pages 125-134.
Crossref
S. Vankova, T. Tsoncheva & D. Mehandjiev. (2004) Effect of precursor of manganese supported on activated carbon catalysts for methanol decomposition. Catalysis Communications 5:2, pages 95-99.
Crossref
B Lindström, J Agrell & L.J Pettersson. (2003) Combined methanol reforming for hydrogen generation over monolithic catalysts. Chemical Engineering Journal 93:1, pages 91-101.
Crossref
T Tsoncheva, S Vankova & D Mehandjiev. (2003) Effect of the precursor and the preparation method on copper based activated carbon catalysts for methanol decomposition to hydrogen and carbon monoxide☆. Fuel 82:7, pages 755-763.
Crossref
Bård Lindström & Lars J. Pettersson. (2002) Steam reforming of methanol over copper-based monoliths: the effects of zirconia doping. Journal of Power Sources 106:1-2, pages 264-273.
Crossref
R Nickolov, T Tsoncheva & D Mehandjiev. (2002) Oxidized carbon as a support of copper oxide catalysts for methanol decomposition to hydrogen and carbon monoxide. Fuel 81:2, pages 203-209.
Crossref
Wu-Hsun Cheng, Ching-Yeh Shiau, Tzu Hsieh Liu, Hsiao Ling Tung, Hsuan Hsu Chen, Jyh-Feng Lu & Chin Cheng Hsu. (1998) Stability of copper based catalysts enhanced by carbon dioxide in methanol decomposition. Applied Catalysis B: Environmental 18:1-2, pages 63-70.
Crossref
Wu-Hsun Cheng, Ching-Yeh Shiau, Tzu Hsieh Liu, Hsiao Ling Tung, Jyh-Feng Lu & Chin Cheng Hsu. (1998) Promotion of Cu/Cr/Mn catalyst by alkali additives in methanol decomposition. Applied Catalysis A: General 170:2, pages 215-224.
Crossref
Xu Xiaoding & J. A. Moulijn. (1996) Mitigation of CO 2 by Chemical Conversion:  Plausible Chemical Reactions and Promising Products . Energy & Fuels 10:2, pages 305-325.
Crossref
Wu-Hsun Cheng. (1995) Deactivation and regeneration of Cu/Cr based methanol decomposition catalysts. Applied Catalysis B: Environmental 7:1-2, pages 127-136.
Crossref
J. Ray Smith, Salvador Aceves & Peter Van Blarigan. Series Hybrid Vehicles and Optimized Hydrogen Engine Design. Series Hybrid Vehicles and Optimized Hydrogen Engine Design.
Wu-Hsun Cheng. (1995) Controlled-environment XRD study of related to activity in methanol decomposition. Materials Chemistry and Physics 41:1, pages 36-40.
Crossref
G.G. Percival, D.N. Eley & A.L. Chaffee. 1994. Natural Gas Conversion II - Proceedings of the Third Natural Gas Conversion Symposium. Natural Gas Conversion II - Proceedings of the Third Natural Gas Conversion Symposium 405 407 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.