51
Views
30
CrossRef citations to date
0
Altmetric
Original Articles

On the Mechanism of Structure Formation During Combustion Synthesis of Titanium Silicides

, , , &
Pages 53-70 | Received 07 Jul 1994, Accepted 21 Jun 1995, Published online: 27 Apr 2007

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (3)

E. A. Levashov, A. S. Mukasyan, A. S. Rogachev & D. V. Shtansky. (2017) Self-propagating high-temperature synthesis of advanced materials and coatings. International Materials Reviews 62:4, pages 203-239.
Read now
S. Hwang, A. S. Mukasyan, A. S. Rogachev & A. Varma. (1997) Combustion Wave Microstructure in Gas-Solid Reaction Systems:Experiments and Theory. Combustion Science and Technology 123:1-6, pages 165-184.
Read now
A. S. MUKASYAN, S. HWANG, A. E. SYTCHEV, A. S. ROGACHEV, A. G. MERZHANOV & A. VARMA. (1996) Combustion Wave Microstructure in Heterogeneous Gasless Systems. Combustion Science and Technology 115:4-6, pages 335-353.
Read now

Articles from other publishers (27)

R. Trevino & E. Shafirovich. (2020) Mechanically Activated SHS of Nb−Ti−Si Compounds. International Journal of Self-Propagating High-Temperature Synthesis 29:3, pages 181-183.
Crossref
A S Rogachev, S G Vadchenko, E V Illarionova, Yu B Scheck, S Rouvimov & A S Mukasyan. (2019) High-temperature reactive melt spreading: Experimental modeling of SHS reactions. IOP Conference Series: Materials Science and Engineering 558:1, pages 012037.
Crossref
A.A. Nepapushev, A.S. Rogachev & A.S. Mukasyan. (2018) The influence of high-energy ball milling on the heterogeneous reaction kinetics in the Ti-Si system. Intermetallics 93, pages 366-370.
Crossref
Guanghua Liu, Jiangtao Li & Kexin Chen. 2010. Handbook of Combustion. Handbook of Combustion 1 62 .
Zhiyuan Chen, Yaqiong Li, Yi Tan & Kazuki Morita. (2015) Reduction of Titanium Oxide by Molten Silicon to Synthesize Titanium Silicide. MATERIALS TRANSACTIONS 56:11, pages 1919-1922.
Crossref
A. S. Rogachev & A. S. Mukas’yan. (2015) Experimental verification of discrete models for combustion of microheterogeneous compositions forming condensed combustion products (Review). Combustion, Explosion, and Shock Waves 51:1, pages 53-62.
Crossref
Manav Vohra, Timothy P. Weihs & Omar M. Knio. (2015) A simplified computational model of the oxidation of Zr/Al multilayers. Combustion and Flame 162:1, pages 249-257.
Crossref
Y.F. Yang & D. Mu. (2014) Effect of Ni addition on the formation mechanism of Ti5Si3 during self-propagation high-temperature synthesis and mechanical property. Journal of the European Ceramic Society 34:10, pages 2177-2185.
Crossref
Hui–Yuan Wang, Min Zha, Si–Jie Lü, Cheng Wang & Qi–Chuan Jiang. (2010) Reaction pathway and phase transitions in Al–Ti–Si system during differential thermal analysis. Solid State Sciences 12:8, pages 1347-1351.
Crossref
A.S. Mukasyan, J.D.E. White, D.Y. Kovalev, N.A. Kochetov, V.I. Ponomarev & S.F. Son. (2010) Dynamics of phase transformation during thermal explosion in the Al–Ni system: Influence of mechanical activation. Physica B: Condensed Matter 405:2, pages 778-784.
Crossref
A.S. Mukasyan & A.S. Rogachev. (2008) Discrete reaction waves: Gasless combustion of solid powder mixtures. Progress in Energy and Combustion Science 34:3, pages 377-416.
Crossref
A. S. Rogachev & F. Baras. (2007) Models of SHS: An overview. International Journal of Self-Propagating High-Temperature Synthesis 16:3, pages 141-153.
Crossref
Ch. Gras, N. Zink, F. Bernard & E. Gaffet. (2007) Assisted self-sustaining combustion reaction in the Fe–Si system: Mechanical and chemical activation. Materials Science and Engineering: A 456:1-2, pages 270-277.
Crossref
Berthold Liebig, Tyler Kerr & Jan A. Puszynski. 2006. Innovative Processing and Synthesis of Ceramics, Glasses, and Composites VI. Innovative Processing and Synthesis of Ceramics, Glasses, and Composites VI 73 82 .
Filippo Maglia, Chiara Milanese, Umberto Anselmi-Tamburini, Stefania Doppiu, Giorgio Cocco & Zuhair A. Munir. (2004) Combustion synthesis of mechanically activated powders in the Ta–Si system. Journal of Alloys and Compounds 385:1-2, pages 269-275.
Crossref
Filippo Maglia, Chiara Milanese, Umberto Anselmi-Tamburini, Stefania Doppiu & Giorgio Cocco. (2011) Combustion synthesis of mechanically activated powders in the Nb–Si system. Journal of Materials Research 17:8, pages 1992-1999.
Crossref
C Gras, N Bernsten, F Bernard & E Gaffet. (2002) The mechanically activated combustion reaction in the Fe–Si system: in situ time-resolved synchrotron investigations. Intermetallics 10:3, pages 271-282.
Crossref
S. Doppiu, M. Monagheddu, G. Cocco, F. Maglia, U. Anselmi-Tamburini & Z. A. Munir. (2011) Mechanochemistry of the titanium–silicon system: Compositional effects. Journal of Materials Research 16:5, pages 1266-1279.
Crossref
F. Maglia, U. Anselmi-Tamburini, G. Cocco, M. Monagheddu, N. Bertolino & Z. A. Munir. (2011) Combustion synthesis of mechanically activated powders in the Ti–Si system. Journal of Materials Research 16:4, pages 1074-1082.
Crossref
F. Maglia, U. Anselmi-Tamburini, N. Bertolino, C. Milanese & Z. A. Munir. (2011) Field-activated combustion synthesis of Ta–Si intermetallic compounds. Journal of Materials Research 16:2, pages 534-544.
Crossref
F. Maglia, U. Anselmi-Tamburini, N. Bertolino, C. Milanese & Z. A. Munir. (2011) Synthesis of Cr–Si intermetallic compounds by field-activated combustion synthesis. Journal of Materials Research 15:5, pages 1098-1109.
Crossref
Alexander S. Mukasyan, Alexander S. Rogache & Arvind Varna. (2000) Microstructural mechanism of combustion in heterogeneous reaction media. Proceedings of the Combustion Institute 28:1, pages 1413-1419.
Crossref
N Bertolino, U Anselmi-Tamburini, F Maglia, G Spinolo & Z.A Munir. (1999) Combustion synthesis of Zr–Si intermetallic compounds. Journal of Alloys and Compounds 288:1-2, pages 238-248.
Crossref
Arvind Varma, Alexander S. Rogachev, Alexander S. Mukasyan & Stephen Hwang. 1998. 79 226 .
C. R. Kachelmyer, I. O. Khomenko, A. S. Rogachev & A. Varma. (2011) A time-resolved x-ray diffraction study of Ti 5 Si 3 product formation during combustion synthesis . Journal of Materials Research 12:12, pages 3230-3240.
Crossref
M. Arimondi, U. Anselmi-Tamburini, A. Gobetti, Z. A. Munir & G. Spinolo. (1997) Chemical Mechanism of the Zr + O 2 → ZrO 2 Combustion Synthesis Reaction . The Journal of Physical Chemistry B 101:41, pages 8059-8068.
Crossref
C.R. Kachelmyer, A. Varma, I.O. Khomenko, A.S. Rogachev & A.G. Merzhanov. (2011) Investigation of Phase Transformations and Ordering During Combustion Synthesis. MRS Proceedings 398.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.