375
Views
63
CrossRef citations to date
0
Altmetric
COMBUSTION TECHNOLOGIES FOR A CLEAN ENVIRONMENT II

A Detailed Kinetic Study of Ammonia Oxidation

, &
Pages 231-254 | Received 21 Jun 1995, Published online: 21 May 2007

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (4)

A. A. KONNOV, I. V. DYAKOV & J. DE RUYCK. (2006) PROBE SAMPLING MEASUREMENTS OF NO IN CH4+O2+N2 FLAMES DOPED WITH NH3 . Combustion Science and Technology 178:6, pages 1143-1164.
Read now
A.A. KONNOV & J. DE RUYCK. (2000) Kinetic Modeling of the Thermal Decomposition of Ammonia. Combustion Science and Technology 152:1, pages 23-37.
Read now
A Massias, D Diamantis, E Mastorakos & D Goussis. (1999) Global reduced mechanisms for methane and hydrogen combustion with nitric oxide formation constructed with CSP data. Combustion Theory and Modelling 3:2, pages 233-257.
Read now
R. P. LINDSTEDT & G. SKEVIS. (1997) Chemistry of Acetylene Flames. Combustion Science and Technology 125:1-6, pages 73-137.
Read now

Articles from other publishers (59)

Zhiqing Yu, Xiang Li, Jianhui Zhao & Lei Shi. (2023) Development of Ammonia Reaction Kinetic Mechanism under Engine-Relevant Conditions. Energy & Fuels 38:1, pages 728-741.
Crossref
Muhammad Aziz, Firman Bagja Juangsa, Adrian Rizqi Irhamna, Achmad Rofi Irsyad, Hariana Hariana & Arif Darmawan. (2023) Ammonia utilization technology for thermal power generation: A review. Journal of the Energy Institute 111, pages 101365.
Crossref
D. Greenblatt, L. Tian & R.P. Lindstedt. (2023) The impact of hydrogen substitution by ammonia on low- and high-temperature combustion. Combustion and Flame 257, pages 112733.
Crossref
Thibault F. Guiberti, Giuseppe Pezzella, Akihiro Hayakawa & S. Mani Sarathy. (2023) Mini Review of Ammonia for Power and Propulsion: Advances and Perspectives. Energy & Fuels 37:19, pages 14538-14555.
Crossref
Alnasif A, Mashruk S, Shi H, Alnajideen M, Wang P, Pugh D & Valera-Medina A. (2023) Evolution of ammonia reaction mechanisms and modeling parameters: A review. Applications in Energy and Combustion Science 15, pages 100175.
Crossref
Huaiyin Wang, Tianyou Wang, Ming Jia, Zhen Lu, Yachao Chang & Kai Sun. (2023) Development of a reduced chemical kinetic mechanism for ammonia combustion using species-based global sensitivity analysis. Fuel 344, pages 128036.
Crossref
Ali Alnasif, Syed Mashruk, Masao Hayashi, Joanna Jójka, Hao Shi, Akihiro Hayakawa & Agustin Valera-Medina. (2023) Performance Investigation of Currently Available Reaction Mechanisms in the Estimation of NO Measurements: A Comparative Study. Energies 16:9, pages 3847.
Crossref
Tao Cai, Dan Zhao & Ephraim Gutmark. (2023) Overview of fundamental kinetic mechanisms and emission mitigation in ammonia combustion. Chemical Engineering Journal 458, pages 141391.
Crossref
Xiaolong Li, Bo Lu, Junjie Jiang, Lina Wang, Tarek Trabelsi, Joseph S. Francisco, Wei Fang, Mingfei Zhou & Xiaoqing Zeng. (2023) Water Complex of Imidogen. Journal of the American Chemical Society 145:3, pages 1982-1987.
Crossref
Danan Chen, Jun Li, Xing Li, Lisheng Deng, Zhaohong He, Hongyu Huang & Noriyuki Kobayashi. (2023) Study on combustion characteristics of hydrogen addition on ammonia flame at a porous burner. Energy 263, pages 125613.
Crossref
Tao Cai, Dan Zhao, Siew Hwa Chan & Mohammad Shahsavari. (2022) Tailoring reduced mechanisms for predicting flame propagation and ignition characteristics in ammonia and ammonia/hydrogen mixtures. Energy 260, pages 125090.
Crossref
Zia ur Rahman, Xuebin Wang, Jiaye Zhang, Zhiwei Yang, Gaofeng Dai, Piyush Verma, Hrvoje Mikulcic, Milan Vujanovic, Houzhang Tan & Richard L. Axelbaum. (2022) Nitrogen evolution, NOX formation and reduction in pressurized oxy coal combustion. Renewable and Sustainable Energy Reviews 157, pages 112020.
Crossref
Yanan Huo, Ruiping Zhang, Shanshan Zhu, Jian Gao, Samuel R. Holden, Mingming Zhu, Zhezi Zhang & Dongke Zhang. (2022) A PRELIMINARY EXPERIMENTAL INVESTIGATION INTO AMMONIA OXIDATION IN A FIXED-BED. International Journal of Energy for a Clean Environment 23:5, pages 23-37.
Crossref
Wai Siong Chai, Yulei Bao, Pengfei Jin, Guang Tang & Lei Zhou. (2021) A review on ammonia, ammonia-hydrogen and ammonia-methane fuels. Renewable and Sustainable Energy Reviews 147, pages 111254.
Crossref
Ning Wang, Shuai Huang, Zhifei Zhang, Tie Li, Ping Yi, Dawei Wu & Gen Chen. (2021) Laminar burning characteristics of ammonia/hydrogen/air mixtures with laser ignition. International Journal of Hydrogen Energy 46:62, pages 31879-31893.
Crossref
Rodger E. Cornell, Mark C. Barbet & Michael P. Burke. (2021) Toward a More Comprehensive Understanding of the Kinetics of a Common Biomass-Derived Impurity: NH 3 Oxidation by N 2 O in a Jet-Stirred Reactor . Energy & Fuels 35:16, pages 13338-13348.
Crossref
Mino Woo & Byung Chul Choi. (2021) Numerical study on fuel-NO formation characteristics of ammonia-added methane fuel in laminar non-premixed flames with oxygen/carbon dioxide oxidizer. Energy 226, pages 120365.
Crossref
A. Valera-Medina, F. Amer-Hatem, A. K. Azad, I. C. Dedoussi, M. de Joannon, R. X. Fernandes, P. Glarborg, H. Hashemi, X. He, S. Mashruk, J. McGowan, C. Mounaim-Rouselle, A. Ortiz-Prado, A. Ortiz-Valera, I. Rossetti, B. Shu, M. Yehia, H. Xiao & M. Costa. (2021) Review on Ammonia as a Potential Fuel: From Synthesis to Economics. Energy & Fuels 35:9, pages 6964-7029.
Crossref
João Sousa Cardoso, Valter Silva, Rodolfo C. Rocha, Matthew J. Hall, Mário Costa & Daniela Eusébio. (2021) Ammonia as an energy vector: Current and future prospects for low-carbon fuel applications in internal combustion engines. Journal of Cleaner Production 296, pages 126562.
Crossref
Penghui Wang, Weitong Pan & Gance Dai. (2020) A CFD‐based design scheme for the perforated distributor with the control of radial flow. AIChE Journal 66:5.
Crossref
Ekenechukwu Chijioke Okafor, Yuji Naito, Sophie Colson, Akinori Ichikawa, Taku Kudo, Akihiro Hayakawa & Hideaki Kobayashi. (2019) Measurement and modelling of the laminar burning velocity of methane-ammonia-air flames at high pressures using a reduced reaction mechanism. Combustion and Flame 204, pages 162-175.
Crossref
Hideaki Kobayashi, Akihiro Hayakawa, K.D. Kunkuma A. Somarathne & Ekenechukwu C. Okafor. (2019) Science and technology of ammonia combustion. Proceedings of the Combustion Institute 37:1, pages 109-133.
Crossref
Maxime Pochet, Véronique Dias, Bruno Moreau, Fabrice Foucher, Hervé Jeanmart & Francesco Contino. (2019) Experimental and numerical study, under LTC conditions, of ammonia ignition delay with and without hydrogen addition. Proceedings of the Combustion Institute 37:1, pages 621-629.
Crossref
Peter Glarborg. 2019. Mathematical Modelling of Gas-Phase Complex Reaction Systems: Pyrolysis and Combustion. Mathematical Modelling of Gas-Phase Complex Reaction Systems: Pyrolysis and Combustion 603 645 .
Jian Wang, Wanqi Gong, Mingyuan Zhu & Bin Dai. (2018) Effect of carbon defects on the nitrogen-doped carbon catalytic performance for acetylene hydrochlorination. Applied Catalysis A: General 564, pages 72-78.
Crossref
Peter Glarborg, James A. Miller, Branko Ruscic & Stephen J. Klippenstein. (2018) Modeling nitrogen chemistry in combustion. Progress in Energy and Combustion Science 67, pages 31-68.
Crossref
Viktor Samu, Tamás Varga, Igor Rahinov, Sergey Cheskis & Tamás Turányi. (2018) Determination of rate parameters based on NH2 concentration profiles measured in ammonia-doped methane–air flames. Fuel 212, pages 679-683.
Crossref
Xingyun Li, Pan Li, Xiulian Pan, Hao Ma & Xinhe Bao. (2017) Deactivation mechanism and regeneration of carbon nanocomposite catalyst for acetylene hydrochlorination. Applied Catalysis B: Environmental 210, pages 116-120.
Crossref
Hadi Nozari, Gizem Karaca, Onur Tuncer & Arif Karabeyoglu. (2017) Porous medium based burner for efficient and clean combustion of ammonia–hydrogen–air systems. International Journal of Hydrogen Energy 42:21, pages 14775-14785.
Crossref
Yu Song, Hamid Hashemi, Jakob Munkholt Christensen, Chun Zou, Paul Marshall & Peter Glarborg. (2016) Ammonia oxidation at high pressure and intermediate temperatures. Fuel 181, pages 358-365.
Crossref
Hiroyuki TAKEISHI, Hirotaka OKANAMI, Jun HAYASHI, Kimio IINO & Fumiteru AKAMATSU. (2016) Study on NOx formation in oxygen-enriched ammonia/N<sub>2</sub>/O<sub>2</sub> laminar flame. Transactions of the JSME (in Japanese) 82:836, pages 15-00566-15-00566.
Crossref
Sophie COLSON, Akihiro HAYAKAWA, Taku KUDO & Hideaki KOBAYASHI. (2016) Extinction characteristics of ammonia/air counterflow premixed flames at various pressures. Journal of Thermal Science and Technology 11:3, pages JTST0048-JTST0048.
Crossref
Álvaro Augusto de Mattos Lourenço, Fábio Luz Almeida & Leandro Seizo Glovaski Glovaski. (2015) OPTIMIZATION OF SELECTIVE-TYPE AFTERTREATMENT SYSTEMS IN DIESEL ENGINES. OPTIMIZATION OF SELECTIVE-TYPE AFTERTREATMENT SYSTEMS IN DIESEL ENGINES.
Stephen J. Klippenstein, Lawrence B. Harding, Peter Glarborg, Yide Gao, Huanzhen Hu & Paul Marshall. (2013) Rate Constant and Branching Fraction for the NH 2 + NO 2 Reaction . The Journal of Physical Chemistry A 117:37, pages 9011-9022.
Crossref
M.R. Weismiller, M.F. RussoJrJr, A.C.T. van Duin & R.A. Yetter. (2013) Using molecular dynamics simulations with a ReaxFF reactive force field to develop a kinetic mechanism for ammonia borane oxidation. Proceedings of the Combustion Institute 34:2, pages 3489-3497.
Crossref
R. Peter Lindstedt. (2012) Gas turbine related technologies for carbon capture. Sustainable Technologies, Systems & Policies 2012:2.
Crossref
B. Wang, L.S. Sun, S. Su, J. Xiang, S. Hu & H. Fei. (2012) A kinetic study of NO formation during oxy-fuel combustion of pyridine. Applied Energy 92, pages 361-368.
Crossref
Alexander A. Konnov, M. Tayyeb Javed, Håkan Kassman & Naseem Irfan. 2010. Handbook of Combustion. Handbook of Combustion 439 464 .
Muhammed Tayyeb Javed, Naseem Irfan & Muhammad Asim Ibrahim. 2010. Handbook of Combustion. Handbook of Combustion 153 173 .
J. Giménez-López, A. Millera, R. Bilbao & M.U. Alzueta. (2010) HCN oxidation in an O2/CO2 atmosphere: An experimental and kinetic modeling study. Combustion and Flame 157:2, pages 267-276.
Crossref
D.A. Knyazkov, A.G. Shmakov, I.V. Dyakov, O.P. Korobeinichev, J. De Ruyck & A.A. Konnov. (2009) Formation and destruction of nitric oxide in methane flames doped with NO at atmospheric pressure. Proceedings of the Combustion Institute 32:1, pages 327-334.
Crossref
Yanwen Zhang, Ningsheng Cai, Jingbiao Yang & Bo Xu. (2008) Experimental and modeling study of the effect of CH4 and pulverized coal on selective non-catalytic reduction process. Chemosphere 73:5, pages 650-656.
Crossref
Sameer V. Naik & Normand M. Laurendeau. (2007) Effects of CH−NO Interactions on Kinetics of Prompt NO in High-Pressure Counterflow Flames. Energy & Fuels 22:1, pages 250-261.
Crossref
Fahrettin Gogtas. (2006) Time-dependent quantum study of the kinetics of the O(3P)+CN(X2+)→CO(X1+)+N(2D) reaction. Chemical Physics Letters 425:1-3, pages 157-162.
Crossref
I. Rahinov, A. Goldman & S. Cheskis. (2006) Absorption spectroscopy diagnostics of amidogen in ammonia-doped methane/air flames. Combustion and Flame 145:1-2, pages 105-116.
Crossref
Cristiane A. Martins, João A. CarvalhoJrJr, Carlos A.G. Veras, Marco A. Ferreira & Pedro T. Lacava. (2006) Experimental measurements of the NOx and CO concentrations operating in oscillatory and non-oscillatory burning conditions. Fuel 85:1, pages 84-93.
Crossref
Kenneth M. Benjamin & Phillip E. Savage. (2005) Detailed Chemical Kinetic Modeling of Methylamine in Supercritical Water. Industrial & Engineering Chemistry Research 44:26, pages 9785-9793.
Crossref
Lenka Hannevold, Ola Nilsen, Arne Kjekshus & Helmer Fjellvåg. (2005) Reconstruction of platinum–rhodium catalysts during oxidation of ammonia. Applied Catalysis A: General 284:1-2, pages 163-176.
Crossref
Øyvind Skreiberg, Pia Kilpinen & Peter Glarborg. (2004) Ammonia chemistry below 1400 K under fuel-rich conditions in a flow reactor. Combustion and Flame 136:4, pages 501-518.
Crossref
Stefan Andersson, Nikola Marković & Gunnar Nyman. (2003) Computational Studies of the Kinetics of the C + NO and O + CN Reactions. The Journal of Physical Chemistry A 107:28, pages 5439-5447.
Crossref
Nathalie Segond, Yukihiko Matsumura & Kazuo Yamamoto. (2002) Determination of Ammonia Oxidation Rate in Sub- and Supercritical Water. Industrial & Engineering Chemistry Research 41:24, pages 6020-6027.
Crossref
Anthony M. Dean & Joseph W. Bozzelli. 2000. Gas-Phase Combustion Chemistry. Gas-Phase Combustion Chemistry 125 341 .
R. P. Lindstedt & V. Sakthitharan. 1999. High-Performance Computing. High-Performance Computing 417 428 .
Igor Derzy, Vladimir A. Lozovsky & Sergey Cheskis. (2013) CH, NH, and NH 2 Concentration Profiles in Methane/Air Flames Doped with N 2 O . Israel Journal of Chemistry 39:1, pages 49-54.
Crossref
B. Feng, Y.B. Zhou, X.F. Shi, C.G. Zheng & K. Okazaki. (2008) Numerical Simulation of NOx Emission from Char Combustion with Detailed Gas Phase Mechanisms. Developments in Chemical Engineering and Mineral Processing 7:5-6, pages 513-524.
Crossref
B. Roduit, A. Wokaun & A. Baiker. (1998) Global Kinetic Modeling of Reactions Occurring during Selective Catalytic Reduction of NO by NH 3 over Vanadia/Titania-Based Catalysts . Industrial & Engineering Chemistry Research 37:12, pages 4577-4590.
Crossref
Volker Sick, Frank Hildenbrand & Peter Lindstedt. (1998) Quantitative laser-based measurements and detailed chemical kinetic modeling of nitric oxide concentrations in methane-air counterflow diffusion flames. Symposium (International) on Combustion 27:1, pages 1401-1409.
Crossref
W. Juchmann, H. Latzel, D.I. Shin, G. Peiter, T. Dreier, H.-R. Volpp, J. Wolfrum, R.P. Lindstedt & K.M. Leung. (1998) Absolute radical concentration measurements and modeling of low-pressure CH4/O2/NO flames. Symposium (International) on Combustion 27:1, pages 469-476.
Crossref
Peter Lindstedt. (1998) Modeling of the chemical complexities of flames. Symposium (International) on Combustion 27:1, pages 269-285.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.