166
Views
37
CrossRef citations to date
0
Altmetric
Original Articles

Gas Dynamic Features of Self Ignition of Non Diluted Fuel/Air Mixtures at High Pressure

, , &
Pages 137-166 | Received 01 Mar 1996, Published online: 23 Jun 2010

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (2)

Marcos Chaos & FrederickL. Dryer. (2008) Syngas Combustion Kinetics and Applications. Combustion Science and Technology 180:6, pages 1053-1096.
Read now
FREDERICK L. DRYER, MARCOS CHAOS, ZHENWEI ZHAO, JEFFREYN. STEIN, JEFFREYY. ALPERT & CHRISTOPHERJ. HOMER. (2007) SPONTANEOUS IGNITION OF PRESSURIZED RELEASES OF HYDROGEN AND NATURAL GAS INTO AIR. Combustion Science and Technology 179:4, pages 663-694.
Read now

Articles from other publishers (35)

Weijie Jia, Yuqi Su, Songtao Cao, Ao Dong, Ying Zhang & Maogang He. (2023) Mutual diffusion coefficients of three alkanes (n-heptane, n-octane and isooctane) in cyclohexane from 288.15 K to 308.15 K. The Journal of Chemical Thermodynamics 184, pages 107086.
Crossref
C. Yang, Y. Hu, X. Y. Wang, Q. Z. Hong & Q. H. Sun. (2023) Stochastic simulation of hydrogen–oxygen auto-ignition at the microscale. The Journal of Chemical Physics 159:8.
Crossref
Wojciech Rudy. (2023) Transition to detonation in a hydrogen-air mixtures due to shock wave focusing in the 90 - deg corner. International Journal of Hydrogen Energy 48:33, pages 12523-12533.
Crossref
Kristian Rönn, Andre Swarts, Vickey Kalaskar, Terry Alger, Rupali Tripathi, Juha Keskiväli, Ossi Kaario, Annukka Santasalo-Aarnio, Rolf Reitz & Martti Larmi. (2023) Low-speed pre-ignition and super-knock in boosted spark-ignition engines: A review. Progress in Energy and Combustion Science 95, pages 101064.
Crossref
Zhiwei Huang & Huangwei Zhang. (2022) Ignition and deflagration-to-detonation transition modes in ethylene/air mixtures behind a reflected shock. Physics of Fluids 34:8.
Crossref
Miles A. Burnett & Margaret S. Wooldridge. (2021) An experimental investigation of flame and autoignition behavior of propane. Combustion and Flame 224, pages 24-32.
Crossref
Jiaying Pan, Zhen Hu, Haiqiao Wei, Lei Wang, Yu He & Xuan Wang. (2020) Forced turbulence affected auto-ignition and combustion modes under engine-relevant conditions. Applications in Energy and Combustion Science 1-4, pages 100015.
Crossref
Alexey D. Kiverin, Kirill O. Minaev & Ivan S. Yakovenko. (2020) Modes of mild ignition in shock tubes: Origins and classification. Combustion and Flame 221, pages 420-428.
Crossref
Jeffrey Santner & S. Scott Goldsborough. (2019) Hot-spot induced mild ignition: Numerical simulation and scaling analysis. Combustion and Flame 209, pages 41-62.
Crossref
Matthew F. Campbell, Shengkai Wang, David F. Davidson & Ronald K. Hanson. (2018) Shock tube study of normal heptane first-stage ignition near 3.5 atm. Combustion and Flame 198, pages 376-392.
Crossref
K. P. Grogan & M. Ihme. (2018) Identification of governing physical processes of irregular combustion through machine learning. Shock Waves 28:5, pages 941-954.
Crossref
A. D. Kiverin & I. S. Yakovenko. (2018) Evolution of wave patterns and temperature field in shock-tube flow. Physical Review Fluids 3:5.
Crossref
S. Scott Goldsborough, Simone Hochgreb, Guillaume Vanhove, Margaret S. Wooldridge, Henry J. Curran & Chih-Jen Sung. (2017) Advances in rapid compression machine studies of low- and intermediate-temperature autoignition phenomena. Progress in Energy and Combustion Science 63, pages 1-78.
Crossref
Jagannath Jayachandran & Fokion N. Egolfopoulos. (2017) Thermal and Ludwig–Soret diffusion effects on near-boundary ignition behavior of reacting mixtures. Proceedings of the Combustion Institute 36:1, pages 1505-1511.
Crossref
A V Drakon, A D Kiverin & I S Yakovenko. (2016) Temperature perturbations evolution as a possible mechanism of exothermal reaction kernels formation in shock tubes. Journal of Physics: Conference Series 774, pages 012092.
Crossref
Ghassan Nicolas & Hameed Metghalchi. (2015) Comparison Between RCCE and Shock Tube Ignition Delay Times at Low Temperatures. Journal of Energy Resources Technology 137:6.
Crossref
Kevin P. Grogan, S. Scott Goldsborough & Matthias Ihme. (2015) Ignition regimes in rapid compression machines. Combustion and Flame 162:8, pages 3071-3080.
Crossref
Kevin Grogan, Qing Wang & Matthias Ihme. (2015) Modeling Gas Dynamic Effects in Shock-Tubes for Reaction Kinetics Measurements. Modeling Gas Dynamic Effects in Shock-Tubes for Reaction Kinetics Measurements.
Kevin P. Grogan & Matthias Ihme. (2015) Weak and strong ignition of hydrogen/oxygen mixtures in shock-tube systems. Proceedings of the Combustion Institute 35:2, pages 2181-2189.
Crossref
. 2015. Flashback Mechanisms in Lean Premixed Gas Turbine Combustion. Flashback Mechanisms in Lean Premixed Gas Turbine Combustion 113 119 .
Matthias Ihme, Yong Sun & Ralf Deiterding. 2015. 29th International Symposium on Shock Waves 1. 29th International Symposium on Shock Waves 1 209 214 .
V. A. Pavlov & G. Ya. Gerasimov. (2014) Measurement of Ignition Limits and Induction Times of Hydrogen–Air Mixtures Behind the Incident Shock Wave Front at Low Temperatures. Journal of Engineering Physics and Thermophysics 87:6, pages 1291-1297.
Crossref
Karel Steurs, Christopher Blomberg & Konstantinos Boulouchos. (2014) Formulation of a Knock Model for Ethanol and Iso-Octane under Specific Consideration of the Thermal Boundary Layer within the End-Gas. SAE International Journal of Engines 7:4, pages 1752-1772.
Crossref
Yangye Zhu, David Frank Davidson & Ronald K. Hanson. (2014) 1-Butanol ignition delay times at low temperatures: An application of the constrained-reaction-volume strategy. Combustion and Flame 161:3, pages 634-643.
Crossref
H.C. Lee, L.Y. Jiang & A.A. Mohamad. (2014) A review on the laminar flame speed and ignition delay time of Syngas mixtures. International Journal of Hydrogen Energy 39:2, pages 1105-1121.
Crossref
Matthias Ihme, Yong Sun & Ralf Deiterding. (2013) Detailed Simulations of Shock-Bifurcation and Ignition of an Argon-diluted Hydrogen/Oxygen Mixture in a Shock Tube. Detailed Simulations of Shock-Bifurcation and Ignition of an Argon-diluted Hydrogen/Oxygen Mixture in a Shock Tube.
S. Vranckx, K.A. Heufer, C. Lee, H. Olivier, L. Schill, W.A. Kopp, K. Leonhard, C.A. Taatjes & R.X. Fernandes. (2011) Role of peroxy chemistry in the high-pressure ignition of n-butanol – Experiments and detailed kinetic modelling. Combustion and Flame 158:8, pages 1444-1455.
Crossref
Sergey P. Medvedev, Gennady L. Agafonov, Sergey V. Khomik & Boris E. Gelfand. (2010) Ignition delay in hydrogen–air and syngas–air mixtures: Experimental data interpretation via flame propagation. Combustion and Flame 157:7, pages 1436-1438.
Crossref
Marcos Chaos & Frederick L. Dryer. (2010) Chemical‐kinetic modeling of ignition delay: Considerations in interpreting shock tube data. International Journal of Chemical Kinetics 42:3, pages 143-150.
Crossref
S. Scott Goldsborough. (2009) A chemical kinetically based ignition delay correlation for iso-octane covering a wide range of conditions including the NTC region. Combustion and Flame 156:6, pages 1248-1262.
Crossref
Subith S. Vasu, David F. Davidson, Zekai Hong & Ronald K. Hanson. (2008) Shock Tube Study of Methylcyclohexane Ignition over a Wide Range of Pressure and Temperature. Energy & Fuels 23:1, pages 175-185.
Crossref
Frederick L. Dryer & Marcos Chaos. (2008) Ignition of syngas/air and hydrogen/air mixtures at low temperatures and high pressures: Experimental data interpretation and kinetic modeling implications. Combustion and Flame 152:1-2, pages 293-299.
Crossref
A.M. Bartenev & B.E. Gelfand. (2000) Spontaneous initiation of detonations. Progress in Energy and Combustion Science 26:1, pages 29-55.
Crossref
C.J Brown & G.O Thomas. (1999) Experimental studies of shock-induced ignition and transition to detonation in ethylene and propane mixtures. Combustion and Flame 117:4, pages 861-870.
Crossref
D. Bradley & C. Morley. 1997. Low-Temperature Combustion and Autoignition. Low-Temperature Combustion and Autoignition 661 760 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.