264
Views
65
CrossRef citations to date
0
Altmetric
Original Articles

Studies on the Ignition and Burning of Levitated Aluminum ParticlesFootnote

, &
Pages 369-390 | Received 03 Apr 1996, Published online: 09 Jun 2010

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (6)

Hai-Tao Huang, Mei-Shuai Zou, Xiao-Yan Guo, Rong-Jie Yang, Yun-Kai Li, En-Zhou Jiang & Zhong-Shan Li. (2014) Study of Different Al/Mg Powders in Hydroreactive Fuel Propellant Used for Water Ramjet. Journal of Energetic Materials 32:sup1, pages S83-S93.
Read now
ALBAL. RAMASWAMY & PAMELA KASTE. (2005) A “Nanovision” of the Physiochemical Phenomena Occurring in Nanoparticles of Aluminum. Journal of Energetic Materials 23:1, pages 1-25.
Read now
NICK GLUMAC, HERMAN KRIER, TIM BAZYN & RYAN EYER. (2005) TEMPERATURE MEASUREMENTS OF ALUMINUM PARTICLES BURNING IN CARBON DIOXIDE. Combustion Science and Technology 177:3, pages 485-511.
Read now
B. LEGRAND, M. MARION, C. CHAUVEAU, I. GOKALP & E. SHAFIROVICH. (2001) Ignition and Combustion of Levitated Magnesium and Aluminum Particles in Carbon Dioxide. Combustion Science and Technology 165:1, pages 151-174.
Read now
E. YA. Shafirovich & U. I. Goldshleger. (1998) Pulsating Combustion of Magnesium Particles in CO. Combustion Science and Technology 135:1-6, pages 241-254.
Read now

Articles from other publishers (59)

I. González de Arrieta, C. Blanchard, P. Laboureur, C. Chauveau, C. Genevois, O. Rozenbaum & F. Halter. (2023) Radiative properties of micron-sized Al/air premixed flames described by an effective medium core-shell formulation. International Journal of Heat and Mass Transfer 203, pages 123815.
Crossref
Wookyung Kim, Rinrin Saeki, Yasuko Ueno, Tomoyuki Johzaki, Takuma Endo & Kwangseok Choi. (2023) Effect of particle size on the minimum ignition energy of aluminum powders. Powder Technology 415, pages 118190.
Crossref
G. Foster, N.J. Kempema, J.E. Boyer, J.R. Harris & R.A. Yetter. (2023) Experimental investigation of aluminum-air burning velocity at elevated pressure. Combustion and Flame 248, pages 112532.
Crossref
Qixiang Zhou, Jin Huang, Wenhu Han & Cheng Wang. (2022) Initiation and propagation of one-dimensional detonations in aluminum-particle/C2H2/air system. Physics of Fluids 34:12.
Crossref
Tianhua Xue, Daolun Liang, Weiqiang Pang, Dekui Shen, Ammar Niamat, Jianzhong Liu & Junhu Zhou. (2022) Ignition and combustion of metal fuels under microgravity: a short review. FirePhysChem 2:4, pages 340-356.
Crossref
Faraz Gilanian Sadeghi, Hesam Moghadasi, Navid Malekian & Mehdi Bidabadi. (2022) Evaluation of Flame Propagation Speed in a System of Random Discrete Sources for Spherical Particles in a Three-Dimensional Space. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 236:5, pages 1790-1799.
Crossref
Clayton J. Miller, Elliot R. Wainwright, Jennifer L. Gottfried, Joseph Abraham, Liang Wei & Michelle L. Pantoya. (2022) The influence of particle size on the fluid dynamics of a laser-induced plasma. Physics of Fluids 34:5.
Crossref
Junlong Wang, Ningfei Wang, Xiangrui Zou, Wenhao Yu & Baolu Shi. (2021) Modeling of micro aluminum particle combustion in multiple oxidizers. Acta Astronautica 189, pages 119-128.
Crossref
S. Dey, N.M. Reang, P.K. Das & M. Deb. (2021) A comprehensive study on prospects of economy, environment, and efficiency of palm oil biodiesel as a renewable fuel. Journal of Cleaner Production 286, pages 124981.
Crossref
Li Mingtai, Xia Zhixun & Huang Liya. (2020) Development Status and Key Technology Analysis of Water Reactive Metal Powder Fuel Power Plant. Development Status and Key Technology Analysis of Water Reactive Metal Powder Fuel Power Plant.
Pingan Liu, Penghua Sui, Zhichao Feng, Song Gao, Naimeng Song & Ruochen Sun. (2020) Molecular dynamic investigations of aluminum nanoparticles coated by the mixtures of ethanol and diethyl ether with different molecular proportions. Journal of Nanoparticle Research 22:8.
Crossref
Ying Chen, Baozhong Zhu, Yunlan Sun, Siyi Zhang, Wei Shi & Xuedong Liu. (2019) Effects of Ammonium Perchlorate Particle Size on the Aluminum Agglomeration in Primary Combustion of the Ammonium Perchlorate/Aluminum Binary Mixture with a High Aluminum Content. Energy & Fuels 33:9, pages 9302-9308.
Crossref
Yunchao Feng, Zhixun Xia, Liya Huang & Likun Ma. (2018) Ignition and combustion of a single aluminum particle in hot gas flow. Combustion and Flame 196, pages 35-44.
Crossref
Mehdi Bidabadi, Saeed Amrollahy Biouki, Abolfazl Afzalabadi, Amir Arsalan Dehghan, Alireza Khoeini Poorfar & Abel Rouboa. (2017) Modeling propagation and extinction of aluminum dust particles in a reaction medium with spatially uniform distribution of particles. Journal of Thermal Analysis and Calorimetry 129:3, pages 1855-1864.
Crossref
Dilip Sundaram, Vigor Yang & Richard A. Yetter. (2017) Metal-based nanoenergetic materials: Synthesis, properties, and applications. Progress in Energy and Combustion Science 61, pages 293-365.
Crossref
Moein MohammadiMehdi BidabadiHamed KhaliliAlireza Khoeini Poorfar. (2017) Modeling Counterflow Combustion of Dust Particle Cloud in Heterogeneous Media. Journal of Energy Engineering 143:2.
Crossref
Vishal Saxena, Niraj Kumar & Vinod.Kumar Saxena. (2017) A comprehensive review on combustion and stability aspects of metal nanoparticles and its additive effect on diesel and biodiesel fuelled C.I. engine. Renewable and Sustainable Energy Reviews 70, pages 563-588.
Crossref
Ethan T. Zepper, Michelle L. Pantoya, Sukalyan Bhattacharya, Jeremy O. Marston, Andreas A. Neuber & Ronald J. Heaps. (2017) Peering through the flames: imaging techniques for reacting aluminum powders. Applied Optics 56:9, pages 2535.
Crossref
S. Abdalla, Reem AL-Wafi & A. Pizzi. (2017) Stability and combustion of metal nano-particles and their additive impact with diesel and biodiesel on engine efficiency: A comprehensive study. Journal of Renewable and Sustainable Energy 9:2.
Crossref
Rim Ben Moussa, Christophe Proust, Mohamed Guessasma, Khashayar Saleh & Jérome Fortin. (2017) Physical mechanisms involved into the flame propagation process through aluminum dust-air clouds: A review. Journal of Loss Prevention in the Process Industries 45, pages 9-28.
Crossref
Yunchao Feng, Zhixun Xia, Liya Huang & Xiaoting Yan. (2016) Experimental investigation on the combustion characteristics of aluminum in air. Acta Astronautica 129, pages 1-7.
Crossref
Mehdi Bidabadi, Saeed Amrollahy Biouki, Ebrahim Yaghoubi, Abel Rouboa, Alireza Khoeini Poorfar & Mohammad Mohebbi. (2016) Reaction-diffusion fronts of aluminum dust cloud in a system of random discrete sources. Energy 107, pages 639-647.
Crossref
Dilip Srinivas Sundaram, Puneesh Puri & Vigor Yang. (2016) A general theory of ignition and combustion of nano- and micron-sized aluminum particles. Combustion and Flame 169, pages 94-109.
Crossref
Song Wang, Salil Mohan & Edward L. Dreizin. (2016) Effect of flow conditions on burn rates of metal particles. Combustion and Flame 168, pages 10-19.
Crossref
Julien Glorian, Stany Gallier & Laurent Catoire. (2016) On the role of heterogeneous reactions in aluminum combustion. Combustion and Flame 168, pages 378-392.
Crossref
D. S. Sundaram, V. Yang & V. E. Zarko. (2015) Combustion of nano aluminum particles (Review). Combustion, Explosion, and Shock Waves 51:2, pages 173-196.
Crossref
Ying Li, Rajiv K. Kalia, Aiichiro Nakano & Priya Vashishta. (2015) Oxidation dynamics of aluminum nanorods. Applied Physics Letters 106:8.
Crossref
Jihwan Lim, Sanghyup Lee & Woongsup Yoon. (2014) A comparative study of the ignition and burning characteristics of afterburning aluminum and magnesium particles. Journal of Mechanical Science and Technology 28:10, pages 4291-4300.
Crossref
Dilip Srinivas Sundaram & Vigor Yang. (2014) Combustion of micron-sized aluminum particle, liquid water, and hydrogen peroxide mixtures. Combustion and Flame 161:9, pages 2469-2478.
Crossref
Kyung-Cheol Lee, Tsubasa Taira, Goon Mo Koo, Jae Young Lee & Jack J. Yoh. (2014) Ignition characteristics of laser-ablated aluminum at shock pressures up to 2 GPa. Journal of Applied Physics 115:1, pages 013503.
Crossref
Stephen J. Brotton & Ralf I. Kaiser. (2013) In Situ Raman Spectroscopic Study of Gypsum (CaSO 4 ·2H 2 O) and Epsomite (MgSO 4 ·7H 2 O) Dehydration Utilizing an Ultrasonic Levitator . The Journal of Physical Chemistry Letters 4:4, pages 669-673.
Crossref
Ahmed A. Abdel-Hafez, Matthew W. Brodt, Joel R. Carney & James M. Lightstone. (2011) Laser dispersion and ignition of metal fuel particles. Review of Scientific Instruments 82:6.
Crossref
Jessica C. Mullen & M. Q. Brewster. (2011) Reduced Agglomeration of Aluminum in Wide-Distribution Composite Propellants. Journal of Propulsion and Power 27:3, pages 650-661.
Crossref
Xiong-Gang Wu, Qi-Long Yan, Xin Guo, Xiao-Fei Qi, Xiao-Jiang Li & Ke-Qiang Wang. (2011) Combustion efficiency and pyrochemical properties of micron-sized metal particles as the components of modified double-base propellant. Acta Astronautica 68:7-8, pages 1098-1112.
Crossref
A. A. Zenin, G. P. Kuznetsov & V. I. Kolesnikov. (2011) Combustion of aluminum-magnesium alloy particles under microgravity conditions. Russian Journal of Physical Chemistry B 5:1, pages 84-96.
Crossref
Robert J. Gill, Carlo Badiola & Edward L. Dreizin. (2010) Combustion times and emission profiles of micron-sized aluminum particles burning in different environments. Combustion and Flame 157:11, pages 2015-2023.
Crossref
Jihwan Lim. (2010) Burning and Ignition Characteristics of Single Aluminum and Magnesium Particle. Burning and Ignition Characteristics of Single Aluminum and Magnesium Particle.
Heesung Yang & Woongsup Yoon. (2010) Modeling of aluminum particle combustion with emphasis on the oxide effects and variable transport properties. Journal of Mechanical Science and Technology 24:4, pages 909-921.
Crossref
Heesung Yang & Woongsup Yoon. (2010) Parametric Investigation on the Sensitivity of the Simplified Aluminum Combustion Modeling. Parametric Investigation on the Sensitivity of the Simplified Aluminum Combustion Modeling.
Heesung Yang, Jihyung Lee, Kyungmoo Kim & Woongsup Yoon. (2009) Simplified Model for Single Aluminum Particle Combustion. Simplified Model for Single Aluminum Particle Combustion.
Tim Bazyn, Herman Krier & Nick Glumac. (2007) Evidence for the transition from the diffusion-limit in aluminum particle combustion. Proceedings of the Combustion Institute 31:2, pages 2021-2028.
Crossref
P. Escot Bocanegra, C. Chauveau & I. Gökalp. (2007) Experimental studies on the burning of coated and uncoated micro and nano-sized aluminium particles. Aerospace Science and Technology 11:1, pages 33-38.
Crossref
Kelly Aita, Nick Glumac, S Vanka & Herman Krier. (2006) Modeling the Combustion of Nano-Sized Aluminum Particles. Modeling the Combustion of Nano-Sized Aluminum Particles.
M. W. Beckstead. (2005) Correlating Aluminum Burning Times. Combustion, Explosion, and Shock Waves 41:5, pages 533-546.
Crossref
Tim Bazyn, Herman Krier & Nick Glumac. (2005) Oxidizer and Pressure Effects on the Combustion of 10-micron Aluminum Particles. Journal of Propulsion and Power 21:4, pages 577-582.
Crossref
V. Sarou-Kanian, J.C. Rifflet, F. Millot, G. Matzen & I. Gökalp. (2005) Influence of nitrogen in aluminum droplet combustion. Proceedings of the Combustion Institute 30:2, pages 2063-2070.
Crossref
E. Shafirovich, P. Escot Bocanegra, C. Chauveau, I. Gökalp, U. Goldshleger, V. Rosenband & A. Gany. (2005) Ignition of single nickel-coated aluminum particles. Proceedings of the Combustion Institute 30:2, pages 2055-2062.
Crossref
Anatoli Zenin, Genadiy Kusnezov & Vladimir Kolesnikov. (2001) Physics of aluminum particle combustion at ultrasonic levitation. Physics of aluminum particle combustion at ultrasonic levitation.
Mark T. Swihart & Laurent Catoire. (2000) Thermochemistry of aluminum species for combustion modeling from Ab Initio molecular orbital calculations. Combustion and Flame 121:1-2, pages 210-222.
Crossref
. 2000. Solid Propellant Chemistry, Combustion, and Motor Interior Ballistics. Solid Propellant Chemistry, Combustion, and Motor Interior Ballistics 859 883 .
. 2000. Solid Propellant Chemistry, Combustion, and Motor Interior Ballistics. Solid Propellant Chemistry, Combustion, and Motor Interior Ballistics 689 722 .
. 2000. Solid Propellant Chemistry, Combustion, and Motor Interior Ballistics. Solid Propellant Chemistry, Combustion, and Motor Interior Ballistics 663 687 .
. 2000. Solid Propellant Chemistry, Combustion, and Motor Interior Ballistics. Solid Propellant Chemistry, Combustion, and Motor Interior Ballistics.
L. Ernst, R. Yetter, F. Dryer, T. Parr & D. Hanson-Parr. (1999) Combustion of aluminum particles in fluorine containing environments. Combustion of aluminum particles in fluorine containing environments.
B. Legrand, M. Marion, C. Chauveau, I. Gokalp & E. Shafirovich. (1998) Studies of the burning of levitated magnesium particles in CO2. Studies of the burning of levitated magnesium particles in CO2.
S. Goroshin, J.H.S. Lee & Yu. Shoshin. (1998) Effect of the discrete nature of heat sources on flame propagation in particulate suspensions. Symposium (International) on Combustion 27:1, pages 743-749.
Crossref
P. Bucher, R.A. Yetter, F.L. Dryer, T.P. Parr & D.M. Hanson-Parr. (1998) PLIF species and ratiometric temperature measurements of aluminum particle combustion in O2, CO2 and N2O oxidizers, and comparison with model calculations. Symposium (International) on Combustion 27:2, pages 2421-2429.
Crossref
Benjamin Legrand, Evgeny Shafirovich, Michaël Marion, Christian Chauveau & Iskender Gökalp. (1998) Ignition and combustion of levitated magnesium particles in carbon dioxide. Symposium (International) on Combustion 27:2, pages 2413-2419.
Crossref
M. Marion, B. Legrand, C. Chauveau, I. Gokalp, M. Marion, B. Legrand, C. Chauveau & I. Gokalp. (1997) Studies on the burning of levitated aluminum particles - Effects of CO2 and pressure. Studies on the burning of levitated aluminum particles - Effects of CO2 and pressure.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.