118
Views
47
CrossRef citations to date
0
Altmetric
Original Articles

Heat-Recirculating Burners: Principles and Some Recent Developments

Pages 3-22 | Received 24 Jul 1996, Published online: 24 Oct 2007

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (4)

Patryk P. Radyjowski, Ingmar Schoegl & Janet L. Ellzey. (2023) Experimental and Analytical Investigation of a Counter-flow Reactor at Lean Conditions. Combustion Science and Technology 195:1, pages 107-132.
Read now
T.C. Hayashi, I. Malico & J.C.F. Pereira. (2010) Effect of different downstream temperatures on the performance of a two-layer porous burner. Combustion Theory and Modelling 14:3, pages 405-423.
Read now
Changrong Cui, Moshe Matalon, Joel Daou & John Dold. (2004) Effects of differential diffusion on thin and thick flames propagating in channels. Combustion Theory and Modelling 8:1, pages 41-64.
Read now
V.V. ZAMASHCHIKOV. (2001) An Investigation of Gas Combustion in a Narrow Tube. Combustion Science and Technology 166:1, pages 1-14.
Read now

Articles from other publishers (43)

Alex M. García, Yefferson López & Andrés A. Amell. (2024) Numerical analysis of oxygen enrichment in a self-recuperative radiant-tube burner. International Journal of Heat and Mass Transfer 223, pages 125154.
Crossref
F. Muller, O. Dounia & L. Selle. (2024) Direct pore-level simulation of hydrogen flame anchoring mechanisms in an inert porous media. Physics of Fluids 36:1.
Crossref
Theera Huabkhuntod, Suradech Sinjapo, Ratinun Luampon & Bundit Krittacom. (2022) Study on heat transfer in two-layer porous media with heat generation in porous media. Energy Reports 8, pages 1565-1576.
Crossref
Václav Nevrlý, Michal Dostál, Vít Klečka, Petr Bitala & Zdeněk Zelinger. 2022. Fundamentals of Low Emission Flameless Combustion and Its Applications. Fundamentals of Low Emission Flameless Combustion and Its Applications 13 43 .
Konstantinos Souflas & Panayiotis Koutmos. (2021) Effects of Stratification and Preheat on Turbulent Flame Characteristics and Stabilization. Flow, Turbulence and Combustion 108:1, pages 237-262.
Crossref
Hisashi Nakamura, Yuji Kuwayama, Takakazu Onishi, Takuya Tezuka, Susumu Hasegawa, Kaoru Maruta, Tadahiro Araake & Susumu Mochida. (2021) Study of high-temperature oxygen combustion (HiTOx) and its heating performance using a laboratory-scale test furnace. Applied Thermal Engineering 194, pages 117077.
Crossref
Roman Weber, Ashwani K. Gupta & Susumu Mochida. (2020) High temperature air combustion (HiTAC): How it all started for applications in industrial furnaces and future prospects. Applied Energy 278, pages 115551.
Crossref
Zhanbin Lu & Moshe Matalon. (2020) Edge flames in mixing layers: Effects of heat recirculation through thermally active splitter plates. Combustion and Flame 217, pages 262-273.
Crossref
Guanqing Wang, Pengbo Tang, Yuan Li, Jiangrong Xu & Franz Durst. (2019) Flame front stability of low calorific fuel gas combustion with preheated air in a porous burner. Energy 170, pages 1279-1288.
Crossref
Alex M. García & Andrés A. Amell. (2018) A numerical analysis of the effect of heat recovery burners on the heat transfer and billet heating characteristics in a walking-beam type reheating furnace. International Journal of Heat and Mass Transfer 127, pages 1208-1222.
Crossref
M. Shantanu, V. Mahendra Reddy & Srinibas Karmakar. (2018) Experimental and numerical studies on heat recirculated high intensity meso-scale combustor for mini gas turbine applications. Energy Conversion and Management 176, pages 324-333.
Crossref
Zhaoxi Yao & Alexei V. Saveliev. (2018) High efficiency high temperature heat extraction from porous media reciprocal flow burner: Time-averaged model. Applied Thermal Engineering 143, pages 614-620.
Crossref
Jeffrey M. Bergthorson. (2018) Recyclable metal fuels for clean and compact zero-carbon power. Progress in Energy and Combustion Science 68, pages 169-196.
Crossref
Minjun Kwon, Ba Hieu Nguyen, Sewon Kim, Yongmo Kim & Jae Hyun Park. (2018) Numerical investigation of buoyancy and thermal radiation effects on a mid-/large-sized low NO x combustion system with flue-gas internal recirculation . Advances in Mechanical Engineering 10:4, pages 168781401876913.
Crossref
Junjie Chen, Xuhui Gao, Longfei Yan & Deguang Xu. (2018) Effect of wall thermal conductivity on the stability of catalytic heat-recirculating micro-combustors. Applied Thermal Engineering 128, pages 849-860.
Crossref
S. Juntron & S. Jugjai. (2017) Development of a high performance flexible porous burner (FPMB) with an adjustable cooling effect. Theoretical and Applied Mechanics Letters 7:6, pages 339-343.
Crossref
Sergey V. Glazov, Vladimir M. Kislov, Eugene A. Salgansky, Oscar S. Rabinovich, Andrei I. Malinouski, Marina V. Salganskaya, Ekaterina N. Pilipenko & Yulia Yu. Kolesnikova. (2017) Effect of local rearrangements in the particle bed on the stability of filtration combustion of solid fuel. International Journal of Heat and Mass Transfer 108, pages 1602-1609.
Crossref
Pedro N. Alvarado, Luis F. Cardona, Alexander Santamaria, Andres A. Amell & Wilson Ruiz. (2017) Characterization of Coal Combustion in a Hot and Diluted Environment Using a Surface-Stabilized Gas Natural Flame. Energy & Fuels 31:4, pages 4479-4487.
Crossref
H.S. Zhen, J. Miao, C.W. Leung, C.S. Cheung & Z.H. Huang. (2016) A study on the effects of air preheat on the combustion and heat transfer characteristics of Bunsen flames. Fuel 184, pages 50-58.
Crossref
Dae Keun Lee & Dong-Soon Noh. (2016) Experimental and theoretical study of excess enthalpy flames stabilized in a radial multi-channel as a model cylindrical porous medium burner. Combustion and Flame 170, pages 79-90.
Crossref
Jeffrey M. Bergthorson & Murray J. Thomson. (2015) A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines. Renewable and Sustainable Energy Reviews 42, pages 1393-1417.
Crossref
C. Duwig & P. Iudiciani. (2014) Large Eddy Simulation of turbulent combustion in a stagnation point reverse flow combustor using detailed chemistry. Fuel 123, pages 256-273.
Crossref
C. Duwig, B. Li, Z.S. Li & M. Aldén. (2012) High resolution imaging of flameless and distributed turbulent combustion. Combustion and Flame 159:1, pages 306-316.
Crossref
A. P. Aldushin. (2011) Macrokinetic analysis of a superadiabatic well-stirred tank reactor. Doklady Physical Chemistry 436:1, pages 1-4.
Crossref
Thomas BauerThomas Bauer. 2011. Thermophotovoltaics. Thermophotovoltaics 147 196 .
Chaojun Tang, Zhiguo Tang, Peiyong Ma, Qizhao Lin & Xianjun Xing. (2009) Research on the Three Different Kinds of Technologies to Achieve Flameless Combustion and Their Applications. Research on the Three Different Kinds of Technologies to Achieve Flameless Combustion and Their Applications.
K.H. Lee & Oh Chae Kwon. (2007) Studies on a High-Temperature Air Combustion Burner for a Compact Fuel-Cell Reformer. Solid State Phenomena 120, pages 135-140.
Crossref
Hai Zhang, Guangxi Yue, Junfu Lu, Zhen Jia, Jiangxiong Mao, Toshiro Fujimori, Toshiyuki Suko & Takashi Kiga. (2007) Development of high temperature air combustion technology in pulverized fossil fuel fired boilers. Proceedings of the Combustion Institute 31:2, pages 2779-2785.
Crossref
V. V. Zamashchikov. (2006) Spin gas combustion in a narrow slot. Combustion, Explosion, and Shock Waves 42:3, pages 264-267.
Crossref
Raymond Viskanta. 2005. Handbook of Porous Media, Second Edition. Handbook of Porous Media, Second Edition 607 644 .
Sumrerng Jugjai & Anantachai Sawananon. (2004) The surface combustor-heater with cyclic flow reversal combustion embedded with water tube bank. Fuel 83:17-18, pages 2369-2379.
Crossref
Geo.A Richards, David A Berry & Adam Freed. (2004) Analysis of a heat recirculating cooler for fuel gas sulfur removal in solid oxide fuel cells. Journal of Power Sources 134:1, pages 49-56.
Crossref
Woo Jin Lee & Hyun Dong Shin. (2003) Visual characteristics, including lift-off, of the jet flames in a cross-flow high-temperature burner. Applied Energy 76:1-3, pages 257-266.
Crossref
Sumrerng Jugjai & Natthawut Rungsimuntuchart. (2002) High efficiency heat-recirculating domestic gas burners. Experimental Thermal and Fluid Science 26:5, pages 581-592.
Crossref
Sumrerng Jugjai, Narongsak Wongpanit, Thawatchai Laoketkan & Sorawut Nokkaew. (2002) The combustion of liquid fuels using a porous medium. Experimental Thermal and Fluid Science 26:1, pages 15-23.
Crossref
F.J. Weinberg, D.M. Rowe, G. Min & P.D. Ronney. (2002) On thermoelectric power conversion from heat recirculating combustion systems. Proceedings of the Combustion Institute 29:1, pages 941-947.
Crossref
J. Vican, B.F. Gajdeczko, F.L. Dryer, D.L. Milius, I.A. Aksay & R.A. Yetter. (2002) Development of a microreactor as a thermal source for microelectromechanical systems power generation. Proceedings of the Combustion Institute 29:1, pages 909-916.
Crossref
G. Min & D.M. Rowe. (2002) “Symbiotic” application of thermoelectric conversion for fluid preheating/power generation. Energy Conversion and Management 43:2, pages 221-228.
Crossref
Gyung-Min Choi & Masashi Katsuki. (2001) Advanced low NOx combustion using highly preheated air. Energy Conversion and Management 42:5, pages 639-652.
Crossref
I-Te Huang, Wen-Chen Chang, Wei-Min Chern & Rey-Chein Chang. (2000) Investigation of Regenerative Combustion Using a Heavy Fuel Oil. Journal of Propulsion and Power 16:4, pages 590-594.
Crossref
J.J. Saastamoinen. (1999) Heat transfer in crossflow regenerators. International Journal of Heat and Mass Transfer 42:17, pages 3205-3216.
Crossref
A. A. Korzhavin, V. A. Bunev, D. M. Gordienko & V. S. Babkin. (1998) Behavior of flames propagating over liquid films with metallic substrates. Combustion, Explosion, and Shock Waves 34:3, pages 260-263.
Crossref
Masashi Katsuki & Toshiaki Hasegawa. (1998) The science and technology of combustion in highly preheated air. Symposium (International) on Combustion 27:2, pages 3135-3146.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.