494
Views
45
CrossRef citations to date
0
Altmetric
Original Articles

Mathematical Modeling of a 2.4 MW Swirling Pulverized Coal Flame

&
Pages 131-182 | Received 04 Dec 1995, Published online: 06 Apr 2007

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (4)

C. Mayer, W. Kerschbaumer, M. Mancini & R. Weber. (2007) Time dependent simulations of dispersion of a cloud of solid particles. Journal of the Energy Institute 80:3, pages 181-183.
Read now
LYLEM. PICKETT, ROBERTE. JACKSON & DALER. TREE. (1999) LDA Measurements in a Pulverized Coal Flame at Three Swirl Ratios. Combustion Science and Technology 143:1-6, pages 79-107.
Read now
L.S. PEDERSEN, P. GLARBORG, K. DAM-JOHANSEN, P. W. HEPBURN & G. HESSELMANN. (1998) A Chemical Engineering Model for Predicting NO Emissions and Burnout from Pulverised Coal Flames. Combustion Science and Technology 132:1-6, pages 251-314.
Read now
Lars Storm Pedersen, Peter Breithauptb, Kim DAM- Johansen & Roman Weber. (1997) Residence Time Distributions in Confined Swirling Flames. Combustion Science and Technology 127:1-6, pages 251-273.
Read now

Articles from other publishers (41)

Tien Duc Luu, Jingyuan Zhang, Jan W. Gärtner, Shiqi Meng, Andreas Kronenburg, Tian Li, Terese Løvås & Oliver T. Stein. (2024) Single particle conversion of woody biomass using fully-resolved and Euler–Lagrange coarse-graining approaches. Fuel 368, pages 131600.
Crossref
Xichuan Cai, Shiquan Shan, Guopei Jin, Jinhong Yu & Zhijun Zhou. (2023) New weighted-sum-of-gray-gases radiation model for oxy-fuel combustion simulation of semi-coke from coal-based poly-generation. Thermal Science and Engineering Progress 46, pages 102233.
Crossref
Brad Travis Rawlins, Ryno Laubscher & Pieter Rousseau. (2023) A fast thermal non-equilibrium eulerian-eulerian numerical simulation methodology of a pulverised fuel combustor. Thermal Science and Engineering Progress 41, pages 101842.
Crossref
H. Mohsenian & N. Ghiasi. (2022) Modeling and simulation of an industrial combustion reactor using computational fluid dynamics. International Journal of Environmental Science and Technology 20:2, pages 1247-1258.
Crossref
Junjun Guo, Jiawei Wan, Fan Hu, Pengfei Li & Zhaohui Liu. 2022. Fundamentals of Low Emission Flameless Combustion and Its Applications. Fundamentals of Low Emission Flameless Combustion and Its Applications 453 475 .
E. B. Butakov, V. A. Kuznetsov, A. V. Minakov, A. A. Dekterev & S. V. Alekseenko. (2021) NUMERICAL STUDY OF DIFFUSION COMBUSTION OF PULVERIZED COAL IN A GAS JET. Journal of Applied Mechanics and Technical Physics 62:3, pages 484-489.
Crossref
V Kuznetsov, A Dekterev & A Minakov. (2021) Numerical study of the processes of co-combustion of pulverized coal and gas fuel based on nonstationary methods of turbulence modeling. Journal of Physics: Conference Series 1867:1, pages 012011.
Crossref
Mengqian Xie, Fangqin Dai & Yaojie Tu. (2021) A numerical study of accelerated moderate or intense low-oxygen dilution (MILD) combustion stability for methane in a lab-scale furnace by off-stoichiometric combustion technology. Chinese Journal of Chemical Engineering 32, pages 108-118.
Crossref
Charles Baukal, Jr.Mark Vaccari. 2020. A Gallery of Combustion and Fire. A Gallery of Combustion and Fire 39 54 .
Roman Weber & Marco Mancini. (2020) On scaling and mathematical modelling of large scale industrial flames. Journal of the Energy Institute 93:1, pages 43-51.
Crossref
G.L. Tufano, O.T. Stein, B. Wang, A. Kronenburg, M. Rieth & A.M. Kempf. (2018) Coal particle volatile combustion and flame interaction. Part II: Effects of particle Reynolds number and turbulence. Fuel 234, pages 723-731.
Crossref
Viktor Kuznetsov, Leonid Maltsev, Alexander Dekterev & Mikhail Chernetskiy. (2018) Numerical investigation of the influence of operating conditions on the formation of nitrogen oxides in the combustion chamber of a low-power boiler during the combustion of coal-water fuel. Journal of Physics: Conference Series 1105, pages 012042.
Crossref
G.L. Tufano, O.T. Stein, B. Wang, A. Kronenburg, M. Rieth & A.M. Kempf. (2018) Coal particle volatile combustion and flame interaction. Part I: Characterization of transient and group effects. Fuel 229, pages 262-269.
Crossref
M. Rieth, A.M. Kempf, A. Kronenburg & O.T. Stein. (2018) Carrier-phase DNS of pulverized coal particle ignition and volatile burning in a turbulent mixing layer. Fuel 212, pages 364-374.
Crossref
Debo Li, Xuan Liu, Yongxin Feng, Chang'an Wang, Qiang Lv, Qiongliang Zha, Jun Zhong & Defu Che. (2017) Effects of oxidant distribution mode and burner configuration on oxy-fuel combustion characteristics in a 600 MWe utility boiler. Applied Thermal Engineering 124, pages 781-794.
Crossref
M. Rieth, F. Proch, A.G. Clements, M. Rabaçal & A.M. Kempf. (2017) Highly resolved flamelet LES of a semi-industrial scale coal furnace. Proceedings of the Combustion Institute 36:3, pages 3371-3379.
Crossref
B. Epple, R. Leithner, H. Müller, W. Linzer, H. Walter & A. Werner. 2017. Numerical Simulation of Power Plants and Firing Systems. Numerical Simulation of Power Plants and Firing Systems 321 457 .
M. Rieth, F. Proch, M. Rabaçal, B.M. Franchetti, F. Cavallo Marincola & A.M. Kempf. (2016) Flamelet LES of a semi-industrial pulverized coal furnace. Combustion and Flame 173, pages 39-56.
Crossref
V Kuznetsov, N Chernetskaya & M Chernetskiy. (2016) Comparative analysis of the influence of turbulence models on the description of the nitrogen oxides formation during the combustion of swirling pulverized coal flow. Journal of Physics: Conference Series 754, pages 112006.
Crossref
M. Yu. Chernetskiy, V. A. Kuznetsov, A. A. Dekterev, N. A. Abaimov & A. F. Ryzhkov. (2016) Comparative analysis of turbulence model effect on description of the processes of pulverized coal combustion at flow swirl. Thermophysics and Aeromechanics 23:4, pages 591-602.
Crossref
Zhihui Mao, Liqi Zhang, Xinyang Zhu, Cong Pan, Baojun Yi & Chuguang Zheng. (2016) Modeling of an oxy-coal flame under a steam-rich atmosphere. Applied Energy 161, pages 112-123.
Crossref
Norbert Modliński, Pawel Madejski, Tomasz Janda, Krzysztof Szczepanek & Wlodzimierz Kordylewski. (2015) A validation of computational fluid dynamics temperature distribution prediction in a pulverized coal boiler with acoustic temperature measurement. Energy 92, pages 77-86.
Crossref
Diego Perrone. (2015) A Study of an Oxy-coal Combustion with Wet recycle using CFD Modelling. Energy Procedia 82, pages 900-907.
Crossref
Yonmo Sung, Cheolyong Choi, Cheoreon Moon, Seongyong Eom, Jong Jae Lee, Byung Doo Kim, Gyungmin Choi & Duckjool Kim. (2015) Nitric oxide emissions and combustion performance of nontraditional ring-fired boilers with furnace geometries. Journal of Mechanical Science and Technology 29:8, pages 3489-3499.
Crossref
V.A. Kuznetsov, K.L. Morozov & M.Yu. Chernetskii. (2015) Numerical investigation of pulverized coal aero mixture combustion at the presence of flow swirling. EPJ Web of Conferences 82, pages 01064.
Crossref
M.Yu. Chernetskiy, A.A. Dekterev, A.P. Burdukov & K. Hanjalić. (2014) Computational modeling of autothermal combustion of mechanically-activated micronized coal. Fuel 135, pages 443-458.
Crossref
Chiara Galletti, Giovanni Coraggio & Leonardo Tognotti. (2013) Numerical investigation of oxy-natural-gas combustion in a semi-industrial furnace: Validation of CFD sub-models. Fuel 109, pages 445-460.
Crossref
Michael Stöllinger, Bertrand Naud, Dirk Roekaerts, Nijso Beishuizen & Stefan Heinz. (2013) PDF modeling and simulations of pulverized coal combustion – Part 2: Application. Combustion and Flame 160:2, pages 396-410.
Crossref
Michael Stöllinger, Bertrand Naud, Dirk Roekaerts, Nijso Beishuizen & Stefan Heinz. (2013) PDF modeling and simulations of pulverized coal combustion – Part 1: Theory and modeling. Combustion and Flame 160:2, pages 384-395.
Crossref
Audai Hussein Al-Abbas & Jamal Naser. (2012) Effect of Chemical Reaction Mechanisms and NO x Modeling on Air-Fired and Oxy-Fuel Combustion of Lignite in a 100-kW Furnace . Energy & Fuels 26:6, pages 3329-3348.
Crossref
P. Edge, M. Gharebaghi, R. Irons, R. Porter, R.T.J. Porter, M. Pourkashanian, D. Smith, P. Stephenson & A. Williams. (2011) Combustion modelling opportunities and challenges for oxy-coal carbon capture technology. Chemical Engineering Research and Design 89:9, pages 1470-1493.
Crossref
Eddy H. Chui & Haining Gao. (2010) Estimation of NOx emissions from coal-fired utility boilers. Fuel 89:10, pages 2977-2984.
Crossref
N. Schaffel, M. Mancini, A. Szle¸k & R. Weber. (2009) Mathematical modeling of MILD combustion of pulverized coal. Combustion and Flame 156:9, pages 1771-1784.
Crossref
. 2006. Technische Verbrennung. Technische Verbrennung 689 709 .
. 2006. Technische Verbrennung. Technische Verbrennung 519 576 .
B. Peters. (2002) Measurements and application of a discrete particle model (DPM) to simulate combustion of a packed bed of individual fuel particles. Combustion and Flame 131:1-2, pages 132-146.
Crossref
Han Chang Cho. (2000) A numerical study on parametric sensitivity of the flow characteristics on pulverized coal gasification. International Journal of Energy Research 24:6, pages 511-523.
Crossref
Han Chang Cho & Hyun Dong Shin. (1999) A numerical study on the effect of flow distribution on reactor performance. International Journal of Energy Research 23:15, pages 1313-1324.
Crossref
J.H.J. Moors, V.E. Banin, J.H.P. Haas, R. Weber & A. Veefkind. (1999) Prediction and validation of burnout curves for Göttelborn char using reaction kinetics determined in shock tube experiments. Fuel 78:1, pages 25-29.
Crossref
Carlos A. Gurgel Veras, Jaakko Saastamoinen & João Andrade De CarvalhoJr.Jr.. (1998) Effect of particle size and pressure on the conversion of fuel N to no in the boundary layer during devolatilization stage of combustion. Symposium (International) on Combustion 27:2, pages 3019-3025.
Crossref
Roman Weber & Frederic Breussin. (1998) Scaling properties of swirling pulverized coal flames: From 180 kW to 50 MW thermal input. Symposium (International) on Combustion 27:2, pages 2957-2964.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.