180
Views
34
CrossRef citations to date
0
Altmetric
Original Articles

A Model for the Effects of Mixing on the Autoignition of Turbulent Flows

, , &
Pages 243-282 | Received 15 Jan 1997, Accepted 17 Feb 1997, Published online: 27 Apr 2007

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (6)

A. El Sayed & C.B. Devaud. (2008) Conditional Moment Closure (CMC) applied to autoignition of high pressure methane jets in a shock tube. Combustion Theory and Modelling 12:5, pages 943-972.
Read now
R.L. Gordon, A.R. Masri, S.B. Pope & G.M. Goldin. (2007) A numerical study of auto-ignition in turbulent lifted flames issuing into a vitiated co-flow. Combustion Theory and Modelling 11:3, pages 351-376.
Read now
A. Pires da Cruz. (2004) THREE-DIMENSIONAL MODELING OF SELF-IGNITION IN HCCI AND CONVENTIONAL DIESEL ENGINES. Combustion Science and Technology 176:5-6, pages 867-887.
Read now
F A Tap, R Hilbert, D Thévenin & D Veynante. (2004) A generalized flame surface density modelling approach for the auto-ignition of a turbulent non-premixed system. Combustion Theory and Modelling 8:1, pages 165-193.
Read now
A R Masri, R Cao, S B Pope & G M Goldin. (2004) Pdf calculations of turbulent lifted flames of H2/N2 fuel issuing into a vitiated co-flow. Combustion Theory and Modelling 8:1, pages 1-22.
Read now
Heinz Pitsch, Chong M Cha & Sergei Fedotov. (2003) Flamelet modelling of non-premixed turbulent combustion with local extinction and re-ignition. Combustion Theory and Modelling 7:2, pages 317-332.
Read now

Articles from other publishers (28)

Ki Sung Jung, Seung Ook Kim, Tianfeng Lu, Jacqueline H. Chen & Chun Sang Yoo. (2021) On the flame stabilization of turbulent lifted hydrogen jet flames in heated coflows near the autoignition limit: A comparative DNS study. Combustion and Flame 233, pages 111584.
Crossref
Quentin Douasbin, Matthias Ihme & Christoph Arndt. (2021) Pareto-efficient combustion framework for predicting transient ignition dynamics in turbulent flames: Application to a pulsed jet-in-hot-coflow flame. Combustion and Flame 223, pages 153-165.
Crossref
Cheng Chi, Abouelmagd Abdelsamie & Dominique Thévenin. (2018) Direct Numerical Simulations of Hotspot-induced Ignition in Homogeneous Hydrogen-air Pre-mixtures and Ignition Spot Tracking. Flow, Turbulence and Combustion 101:1, pages 103-121.
Crossref
Christoph A. Schmalhofer, Peter Griebel & Manfred Aigner. (2018) The Influence of Carrier Air Preheating on Autoignition of Inline-Injected Hydrogen–Nitrogen Mixtures in Vitiated Air of High Temperature. Journal of Engineering for Gas Turbines and Power 140:3.
Crossref
Michael J. Papageorge, Christoph Arndt, Frederik Fuest, Wolfgang Meier & Jeffrey A. Sutton. (2014) High-speed mixture fraction and temperature imaging of pulsed, turbulent fuel jets auto-igniting in high-temperature, vitiated co-flows. Experiments in Fluids 55:7.
Crossref
S. G. Kerkemeier, C. N. Markides, C. E. Frouzakis & K. Boulouchos. (2013) Direct numerical simulation of the autoignition of a hydrogen plume in a turbulent coflow of hot air. Journal of Fluid Mechanics 720, pages 424-456.
Crossref
Christos N. Markides & Nilanjan Chakraborty. (2013) Statistics of the scalar dissipation rate using direct numerical simulations and planar laser-induced fluorescence data. Chemical Engineering Science 90, pages 221-241.
Crossref
Samer F. Ahmed. (2012) Scalar dissipation rate statistics in turbulent flows using Planar Laser Induced Fluorescence measurements. International Journal of Heat and Fluid Flow 33:1, pages 220-231.
Crossref
Christos N. Markides & Epaminondas Mastorakos. (2010) Experimental Investigation of the Effects of Turbulence and Mixing on Autoignition Chemistry. Flow, Turbulence and Combustion 86:3-4, pages 585-608.
Crossref
Annarita Viggiano. (2010) Exploring the effect of fluid dynamics and kinetic mechanisms on n-heptane autoignition in transient jets. Combustion and Flame 157:2, pages 328-340.
Crossref
C. S. YOO, R. SANKARAN & J. H. CHEN. (2009) Three-dimensional direct numerical simulation of a turbulent lifted hydrogen jet flame in heated coflow: flame stabilization and structure. Journal of Fluid Mechanics 640, pages 453-481.
Crossref
G. De Paola, I. S. Kim & E. Mastorakos. (2008) Second-Order Conditional Moment Closure Simulations of Autoignition of an n-heptane Plume in a Turbulent Coflow of Heated Air. Flow, Turbulence and Combustion 82:4, pages 455-475.
Crossref
Epaminondas Mastorakos. (2009) Ignition of turbulent non-premixed flames. Progress in Energy and Combustion Science 35:1, pages 57-97.
Crossref
A. El Sayed, A. Milford & C.B. Devaud. (2009) Modelling of autoignition for methane-based fuel blends using Conditional Moment Closure. Proceedings of the Combustion Institute 32:1, pages 1621-1628.
Crossref
Guillaume Blanquart & Heinz Pitsch. (2005) Modeling autoignition in non-premixed turbulent combustion using a stochastic flamelet approach. Proceedings of the Combustion Institute 30:2, pages 2745-2753.
Crossref
F.A. Tap & D. Veynante. (2005) Simulation of flame lift-off on a diesel jet using a generalized flame surface density modeling approach. Proceedings of the Combustion Institute 30:1, pages 919-926.
Crossref
C.N. Markides & E. Mastorakos. (2005) An experimental study of hydrogen autoignition in a turbulent co-flow of heated air. Proceedings of the Combustion Institute 30:1, pages 883-891.
Crossref
G Samuelsen, V McDonell & P. Couch. (2004) Characterization of Flameholding Tendencies in Premixer Passages for Gas Turbine Applications. Characterization of Flameholding Tendencies in Premixer Passages for Gas Turbine Applications.
J.D. Blouch, J-Y Chen & C.K. Law. (2003) A joint scalar PDF study of nonpremixed hydrogen ignition. Combustion and Flame 135:3, pages 209-225.
Crossref
R. Hilbert, F. Tap, D. Veynante & D. Thévenin. (2002) A new modeling approach for the autoignition of a non-premixed turbulent flame using DNS. Proceedings of the Combustion Institute 29:2, pages 2079-2085.
Crossref
S. Sreedhara & K.N. Lakshmisha. (2002) Assessment of conditional moment closure models of turbulent autoignition using DNS data. Proceedings of the Combustion Institute 29:2, pages 2069-2077.
Crossref
S. Sreedhara & K.N. Lakshmisha. (2002) Autoignition in a non-premixed medium: DNS studies on the effects of three-dimensional turbulence. Proceedings of the Combustion Institute 29:2, pages 2051-2059.
Crossref
Renan Hilbert & Dominique Thévenin. (2002) Autoignition of turbulent non-premixed flames investigated using direct numerical simulations. Combustion and Flame 128:1-2, pages 22-37.
Crossref
A. Pires da Cruz, T.A. Baritaud & T.J. Poinsot. (2001) Self-ignition and combustion modeling of initially nonpremixed turbulent systems. Combustion and Flame 124:1-2, pages 65-81.
Crossref
Seung Hyun Kim, Kang Y. Huh & Roydon A. Fraser. Numerical Prediction of the Autoignition Delay in a Diesel-Like Environment by the Conditional Moment Closure Model. Numerical Prediction of the Autoignition Delay in a Diesel-Like Environment by the Conditional Moment Closure Model.
S. Sreedhara & K.N. Lakshmisha. (2000) Direct numerical simulation of autoignition in a non-premixed, turbulent medium. Proceedings of the Combustion Institute 28:1, pages 25-33.
Crossref
A.Y. Klimenko & R.W. Bilger. (1999) Conditional moment closure for turbulent combustion. Progress in Energy and Combustion Science 25:6, pages 595-687.
Crossref
E. Mastorakos & R. W. Bilger. (1998) Second-order conditional moment closure for the autoignition of turbulent flows. Physics of Fluids 10:6, pages 1246-1248.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.