195
Views
47
CrossRef citations to date
0
Altmetric
Section III: Piezoelectricity in biomaterials and living structures

Piezoelectricity of natural biomaterials

Pages 285-296 | Published online: 08 Feb 2011

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (1)

Fu-Cheng Kao, Hsin-Hsuan Ho, Ping-Yeh Chiu, Ming-Kai Hsieh, Jen‐Chung Liao, Po-Liang Lai, Yu-Fen Huang, Min-Yan Dong, Tsung-Ting Tsai & Zong-Hong Lin. (2022) Self-assisted wound healing using piezoelectric and triboelectric nanogenerators. Science and Technology of Advanced Materials 23:1, pages 1-16.
Read now

Articles from other publishers (46)

Amit Nain, Srishti Chakraborty, Snigdha Roy Barman, Pratik Gavit, Sushma Indrakumar, Akhilesh Agrawal, Zong-Hong Lin & Kaushik Chatterjee. (2024) Progress in the development of piezoelectric biomaterials for tissue remodeling. Biomaterials 307, pages 122528.
Crossref
Haoran Wu, Sarah Guerin, Syed A. M. Tofail, Rusen Yang, Ehud Gazit, Damien Thompson & Kai Tao. 2024. Peptide Self‐Assembly and Engineering. Peptide Self‐Assembly and Engineering 367 392 .
Satish Bonam, K. Aditya Bhagavathi, Jose Joseph, Shiv Govind Singh & Siva Rama Krishna Vanjari. (2023) An Ultra-Flexible Tactile Sensor Using Silk Piezoelectric Thin Film. IEEE Sensors Journal 23:16, pages 18656-18663.
Crossref
Nikhil Dilip Kulkarni, Abir Saha & Poonam Kumari. (2023) The development of a low‐cost, sustainable bamboo‐based flexible bio composite for impact sensing and mechanical energy harvesting applications. Journal of Applied Polymer Science 140:29.
Crossref
Christian Rentero, Asier Medel, Marta E.G. Mosquera & Valentina Sessini. 2023. Biopolymers. Biopolymers 131 165 .
Jun-Hong Liu, Wu-Di Li, Jin Jia, Chun-Yan Tang, Shan Wang, Peng Yu, Zheng-Min Zhang, Kai Ke, Rui-Ying Bao, Zheng-Ying Liu, Yu Wang, Kai Zhang, Ming-Bo Yang & Wei Yang. (2022) Structure-regenerated silk fibroin with boosted piezoelectricity for disposable and biodegradable oral healthcare device. Nano Energy 103, pages 107787.
Crossref
Ruoxing Wang, Jiajie Sui & Xudong Wang. (2022) Natural Piezoelectric Biomaterials: A Biocompatible and Sustainable Building Block for Biomedical Devices. ACS Nano 16:11, pages 17708-17728.
Crossref
S.H. Mat Zin, T.S. Velayutham, T. Furukawa, H. Kodama, W.C. Gan, Sirinart Chio-Srichan, M. Kriechbaum & T. Nakajima. (2022) Quantitative study on the face shear piezoelectricity and its relaxation in uniaxially-drawn and annealed poly-l-lactic acid. Polymer 254, pages 125095.
Crossref
Qianqian Niu, Haifeng Wei, Benjamin S. Hsiao & Yaopeng Zhang. (2022) Biodegradable silk fibroin-based bio-piezoelectric/triboelectric nanogenerators as self-powered electronic devices. Nano Energy 96, pages 107101.
Crossref
Oleg V. Gradov, Margaret A. Gradova & Valentin V. Kochervinskii. 2022. Organic Ferroelectric Materials and Applications. Organic Ferroelectric Materials and Applications 571 619 .
Elvan Konuk Tokak, Damla Çetin Altındal, Özge Ekin Akdere & Menemşe Gümüşderelioğlu. (2021) In-vitro effectiveness of poly-β-alanine reinforced poly(3-hydroxybutyrate) fibrous scaffolds for skeletal muscle regeneration. Materials Science and Engineering: C 131, pages 112528.
Crossref
Asmita Veronica & I‐ming Hsing. (2021) An Insight into Tunable Innate Piezoelectricity of Silk for Green Bioelectronics. ChemPhysChem 22:22, pages 2266-2280.
Crossref
Fatemeh Mokhtari, Bahareh Azimi, Maryam Salehi, Samaneh Hashemikia & Serena Danti. (2021) Recent advances of polymer-based piezoelectric composites for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials 122, pages 104669.
Crossref
Shlomo Berger. (2021) Autonomous biocompatible piezoelectrics. Science 373:6552, pages 278-279.
Crossref
Hyunki Kim, Saehan Choi, Yunhwa Hong, Jinhyo Chung, Jinhyeok Choi, Woong-Ku Choi, In Woo Park, Sang Hyeok Park, Hyeok Park, Woo-Jae Chung, Kwang Heo & Minbaek Lee. (2021) Biocompatible and biodegradable triboelectric nanogenerators based on hyaluronic acid hydrogel film. Applied Materials Today 22, pages 100920.
Crossref
Mingyue Liu, Nicholas Yaraghi, Jun Xu, David Kisailus & Umar Mohideen. (2020) Compact fiber optical interferometer technique to measure picometer displacements in biological piezoelectric materials. Measurement Science and Technology 31:2, pages 025207.
Crossref
In Woo Park, Kyung Won Kim, Yunhwa Hong, Hyun Ji Yoon, Yonghun Lee, Dham Gwak & Kwang Heo. (2020) Recent Developments and Prospects of M13- Bacteriophage Based Piezoelectric Energy Harvesting Devices. Nanomaterials 10:1, pages 93.
Crossref
Nelson Castro, Nelson Pereira, Vanessa F. Cardoso, Clarisse Ribeiro & Senentxu Lanceros-Mendez. 2019. Nanostructured Thin Films. Nanostructured Thin Films 35 65 .
Melodie Chen-Glasser, Panpan Li, Jeongjae Ryu & Seungbum Hong. 2018. Piezoelectricity - Organic and Inorganic Materials and Applications. Piezoelectricity - Organic and Inorganic Materials and Applications.
Hui-Lung Chen, Shin-Pon Ju, Chen-Yun Lin & Cheng-Tang Pan. (2018) Investigation of microstructure and mechanical properties of polyvinylidene fluoride/carbon nanotube composites after electric field polarization: A molecular dynamics study. Computational Materials Science 149, pages 217-229.
Crossref
Clarisse Ribeiro, Carlos M. Costa, Pedro Martins, Vítor Correia & Senentxu Lanceros-Mendez. 2018. Reference Module in Materials Science and Materials Engineering. Reference Module in Materials Science and Materials Engineering.
Ransés Alfonso-Rodríguez, Julián Bravo-Castillero, Raúl Guinovart-Díaz, Reinaldo Rodríguez-Ramos, Renald Brenner, Leslie D. Pérez-Fernández & Federico J. Sabina. 2018. Generalized Models and Non-classical Approaches in Complex Materials 1. Generalized Models and Non-classical Approaches in Complex Materials 1 1 26 .
Hui-Lung Chen, Chia-Hao Su, Shin-Pon Ju, Hsing-Yin Chen, Jenn-Sen Lin, Jin-Yuan Hsieh, Po-Yu Yang & Chen-Yun Lin. (2017) Predicting mechanical properties of polyvinylidene fluoride/carbon nanotube composites by molecular simulation. Materials Research Express 4:11, pages 115025.
Crossref
Zubair Ahmad, Muhammad Awais, Mansoor Ani Najeeb, R. A. Shakoor & Farid Touati. 2017. Smart Polymer Nanocomposites. Smart Polymer Nanocomposites 95 118 .
Kazuhiro Tanimoto, Shota Saihara, Yu Adachi, Yuhei Harada, Yuki Shiomi & Yoshiro Tajitsu. (2015) Shear piezoelectricity of optically active polysuccinimides. Japanese Journal of Applied Physics 54:10S, pages 10NF02.
Crossref
Igor Sevostianov, Uziel Paulo da Silva & Adair Roberto Aguiar. (2014) Green’s function for piezoelectric 622 hexagonal crystals. International Journal of Engineering Science 84, pages 18-28.
Crossref
Kazuhiro Tanimoto, Hisayoshi Nishizaki, Teruyuki Tada, Yuki Shiomi, Nariaki Ito, Kouki Shibata, Hidemine Furuya, Akihiro Abe, Kenji Imoto, Munehiro Date, Eiichi Fukada & Yoshiro Tajitsu. (2014) Effect of helix inversion of poly(β-phenethyl l-aspartate) on macroscopic piezoelectricity. Japanese Journal of Applied Physics 53:9S, pages 09PC01.
Crossref
Kailiang Ren, William L. Wilson, James E. West, Q. M. Zhang & S. Michael Yu. (2012) Piezoelectric property of hot pressed electrospun poly(γ-benzyl-α, L-glutamate) fibers. Applied Physics A 107:3, pages 639-646.
Crossref
Tuna Yucel, Peggy Cebe & David L. Kaplan. (2011) Structural Origins of Silk Piezoelectricity. Advanced Functional Materials 21:4, pages 779-785.
Crossref
Eduardo López-López, Federico J. Sabina, Julián Bravo-Castillero, Raúl Guinovart-Díaz & Reinaldo Rodríguez-Ramos. (2005) Overall electromechanical properties of a binary composite with 622 symmetry constituents.. International Journal of Solids and Structures 42:21-22, pages 5765-5777.
Crossref
Y. Ikada, Y. Shikinami, Y. Hara, M. Tagawa & E. Fukada. (1996) Enhancement of bone formation by drawn poly(L-lactide). Journal of Biomedical Materials Research 30:4, pages 553-558.
Crossref
Colin W. Pouton & Saghir Akhtar. (1996) Biosynthetic polyhydroxyalkanoates and their potential in drug delivery. Advanced Drug Delivery Reviews 18:2, pages 133-162.
Crossref
Zeng Yanwei, Xue Wanrong, A. Benedetti & G. Fagherazzi. (2004) Microstructure study of Sm, Mn-modified PbTiO3 piezoelectric ceramics by XRD profile-fitting technique. Journal of Materials Science 29:4, pages 1045-1050.
Crossref
W. R. Cook jr. 1993. Piezoelectric, Pyroelectric, and Related Constants. Piezoelectric, Pyroelectric, and Related Constants 311 324 .
W. R. Cook jr. 1993. Piezoelectric, Pyroelectric, and Related Constants. Piezoelectric, Pyroelectric, and Related Constants 138 139 .
W. R. Cook jr. 1993. Piezoelectric, Pyroelectric, and Related Constants. Piezoelectric, Pyroelectric, and Related Constants 136 138 .
W. R. Cook jr. 1993. Piezoelectric, Pyroelectric, and Related Constants. Piezoelectric, Pyroelectric, and Related Constants 66 66 .
W. R. Cook jr. 1993. Piezoelectric, Pyroelectric, and Related Constants. Piezoelectric, Pyroelectric, and Related Constants 65 66 .
E. Fukada. (1992) Bioelectrets and biopiezoelectricity. IEEE Transactions on Electrical Insulation 27:4, pages 813-819.
Crossref
E. Fukada. (1991) Bioelectret and biopiezoelectricity. Bioelectret and biopiezoelectricity.
P.D. Richardson. (1989) Piezoelectric polymers. IEEE Engineering in Medicine and Biology Magazine 8:2, pages 14-16.
Crossref
Eiichi Fukada & Yutaka Ando. (1986) Piezoelectric properties of poly-β-hydroxybutyrate and copolymers of β-hydroxybutyrate and β-hydroxyvalerate. International Journal of Biological Macromolecules 8:6, pages 361-366.
Crossref
D. Damjanovic, T.R. Gururaja, S.J. Jang & L.E. Cross. (1986) Temperature behavior of the complex piezoelectric d31 coefficient in modified lead titanate ceramics. Materials Letters 4:10, pages 414-419.
Crossref
D. De Rossi, C. Domenici & P. Pastacaldi. (1986) Piezoelectric Properties of Dry Human Skin. IEEE Transactions on Electrical Insulation EI-21:3, pages 511-517.
Crossref
D. Damjanovic, T.R. Gururaja, S.J. Jang & L.E. Cross. (1986) Possible Mechanisms for the Electromechanical Anisotropy in Modified Lead Titanate Ceramics. Possible Mechanisms for the Electromechanical Anisotropy in Modified Lead Titanate Ceramics.
R. Gerhard-Multhaupt, B. Gross & G. M. Sessler. 1987. Electrets. Electrets 383 431 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.