127
Views
72
CrossRef citations to date
0
Altmetric
Original Articles

An experimental and theoretical study of 1–3 AND 1-3-0 piezoelectric PZT-Polymer composites for hydrophone applications

&
Pages 123-139 | Received 07 Jan 1986, Published online: 08 Feb 2011

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (14)

D. Li & K. Duan. (2014) 1-3 Piezocomposite for Vibration Accelerometer Applications. Ferroelectrics 466:1, pages 86-91.
Read now
Vitaly Yu. Topolov, ChristopherR. Bowen, SergeiE. Filippov & AlexanderA. Vorontsov. (2012) Novel High-Sensitivity Composites Based on Ferroelectric Ceramics. Integrated Ferroelectrics 133:1, pages 91-95.
Read now
VitalyYu. Topolov, ChristopherR. Bowen & SergeiE. Filippov. (2012) High Performance of Novel 1–3-Type Composites Based on Ferroelectric PZT-Type Ceramics. Ferroelectrics 430:1, pages 92-97.
Read now
VitalyYu. Topolov & AnatolyE. Panich. (2009) Problem of Piezoelectric Sensitivity of 1–3-Type Composites Based on Ferroelectric Ceramics. Ferroelectrics 392:1, pages 107-119.
Read now
Yeong-Chen Chen, Kuei-Kai Chang, Long Wu & Cheng-Liang Huang. (1998) Effects of porosity and polymer matrix on the properties of piezoelectric ceramic/polymer composites. Ferroelectrics 215:1, pages 123-130.
Read now
G. Prasad, G.S. Kumar, T. Bhimasankaram & S.V. Suryanarayana. (1995) A model for estimation of electromechanical characteristics of piezoelectric polymer composites. Ferroelectrics Letters Section 19:1-2, pages 45-50.
Read now
J. Zhao, Q.M. Zhang & Wenwu Cao. (1995) Effects of face plates and edge strips on hydrostatic piezoelectric response of 1-3 composites. Ferroelectrics 173:1, pages 243-256.
Read now
Chulho Kim, KurtM. Rittenmyer & Manfred Kahn. (1994) 1-1-3 Piezocomposite for hydrophone transducer. Ferroelectrics 156:1, pages 19-24.
Read now
C. Richard, P. Eyraud, L. Eyraud, M. Richard & G. Grange. (1992) PcC2. 1. 3. 1 PZT-Polymer composites for high pressure hydrophone application. Ferroelectrics 134:1, pages 59-64.
Read now
RobertY. Ting, Avnera. Shaulov & WallaceA. Smith. (1992) Evaluation of the properties of 1-3 piezocomposites of a new lead titanate in epoxy resins. Ferroelectrics 132:1, pages 69-77.
Read now
A.A. Shaulov, W. Arden Smith & R.Y. Ting. (1989) Modified-lead-titanate/polymer composites for hydrophone applications. Ferroelectrics 93:1, pages 177-182.
Read now
A.M. Varaprasad & K. Uchino. (1987) Dielectric and piezoelectric studies of La doped PZT polymer composites. Ferroelectrics Letters Section 7:4, pages 89-95.
Read now

Articles from other publishers (58)

Hamid Saheban & Zoheir Kordrostami. (2021) Hydrophones, fundamental features, design considerations, and various structures: A review. Sensors and Actuators A: Physical 329, pages 112790.
Crossref
Kamran A Khan, Hamad K Alarafati & Muhammad Ali Khan. (2021) Micromechanical modeling of architected piezoelectric foam with simplified boundary conditions for hydrophone applications. Journal of Intelligent Material Systems and Structures 32:15, pages 1700-1712.
Crossref
Kamran A Khan, Falah Al Hajeri & Muhammad Ali Khan. (2021) Micromechanical modeling approach with simplified boundary conditions to compute electromechanical properties of architected piezoelectric composites. Smart Materials and Structures 30:3, pages 035013.
Crossref
K. Thanigai Arul & M.S. Ramachandra Rao. (2020) Ferroelectric properties of flexible PZT composite films. Journal of Physics and Chemistry of Solids 146, pages 109371.
Crossref
Andong Wang, Caifeng Chen & Youming Zhang. (2020) Orthogonal Anisotropic Sensing and Actuating Characteristics of a 1-3 PZT Piezoelectric Microfiber Composite. Journal of Electronic Materials 49:8, pages 4903-4909.
Crossref
Chuong Nguyen, Xiaoying Zhuang & Ludovic Chamoin. 2020. Virtual Design and Validation. Virtual Design and Validation 185 198 .
Kamran A. Khan & Muhammad Ali Khan. (2019) 3-3 piezoelectric metamaterial with negative and zero Poisson’s ratio for hydrophones applications. Materials Research Bulletin 112, pages 194-204.
Crossref
Sophia Eßlinger, Sirko Geller, Kai Hohlfeld, Sylvia Gebhardt, Alexander Michaelis, Maik Gude, Andreas Schönecker & Peter Neumeister. (2018) Novel poling method for piezoelectric 0–3 composites and transfer to series production. Sensors and Actuators A: Physical 270, pages 231-239.
Crossref
De-ping Zeng, Hua Wang, Ying-qi Sun, Xue-mei Gao & Zeng-tao Yang. (2017) Sensitivity characteristics of 1–3 piezoelectric composite hydrophones over a wide frequency range. Sensitivity characteristics of 1–3 piezoelectric composite hydrophones over a wide frequency range.
Zengtao Yang, Hua Wang, Deping Zeng, Chunliang Zhao & Ziguang Chen. (2016) Dynamic modeling of 1–3 piezoelectric composite hydrophone and its experimental validation. Composite Structures 150, pages 246-254.
Crossref
Sumantu Iyer, Maen Alkhader & T.A. Venkatesh. (2016) On the relationships between cellular structure, deformation modes and electromechanical properties of piezoelectric cellular solids. International Journal of Solids and Structures 80, pages 73-83.
Crossref
V.Yu. Topolov, C.R. Bowen & P. Bisegna. (2015) New aspect-ratio effect in three-component composites for piezoelectric sensor, hydrophone and energy-harvesting applications. Sensors and Actuators A: Physical 229, pages 94-103.
Crossref
Sumantu Iyer, Maen Alkhader & T.A. Venkatesh. (2015) Electromechanical behavior of auxetic piezoelectric cellular solids. Scripta Materialia 99, pages 65-68.
Crossref
Xiaoning Jiang, Jinwook Kim & Kyugrim Kim. (2014) Relaxor-PT Single Crystal Piezoelectric Sensors. Crystals 4:3, pages 351-376.
Crossref
Sumantu Iyer, Maen Alkhader & T. A. Venkatesh. (2014) Electromechanical Response of Piezoelectric Honeycomb Foam Structures. Journal of the American Ceramic Society 97:3, pages 826-834.
Crossref
Sumantu Iyer & T.A. Venkatesh. (2014) Electromechanical response of (3–0,3–1) particulate, fibrous, and porous piezoelectric composites with anisotropic constituents: A model based on the homogenization method. International Journal of Solids and Structures 51:6, pages 1221-1234.
Crossref
Lili Li, Shujun Zhang, Zhuo Xu, Xuecang Geng, Fei Wen, Jun Luo & Thomas R. Shrout. (2014) Hydrostatic piezoelectric properties of [011] poled Pb(Mg 1/3 Nb 2/3 )O 3 -PbTiO 3 single crystals and 2-2 lamellar composites . Applied Physics Letters 104:3, pages 032909.
Crossref
Vitaly Yu. Topolov, Paolo Bisegna & Christopher R. BowenVitaly Yu. Topolov, Paolo Bisegna & Christopher R. Bowen. 2014. Piezo-Active Composites. Piezo-Active Composites 89 126 .
Sumantu Iyer & T. A. Venkatesh. (2011) Electromechanical response of (3-0) porous piezoelectric materials: Effects of porosity shape. Journal of Applied Physics 110:3.
Crossref
N. Rajapakse & Yue Chen. (2008) A coupled analytical model for hydrostatic response of 1-3 piezocomposites. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 55:8, pages 1847-1858.
Crossref
Kim Benjamin. 2008. Handbook of Signal Processing in Acoustics. Handbook of Signal Processing in Acoustics 1783 1819 .
Aaron T. Crumm, John W. Halloran, Emilio C. N. Silva & Francisco Montero de Espinosa. (2007) Microconfigured piezoelectric artificial materials for hydrophones. Journal of Materials Science 42:11, pages 3944-3950.
Crossref
Yi-Heng ChenNorio Hasebe. (2016) Current Understanding on Fracture Behaviors of Ferroelectric/Piezoelectric Materials. Journal of Intelligent Material Systems and Structures 16:7-8, pages 673-687.
Crossref
Yeong-Chin Chen & Sean Wu. (2004) Piezoelectric composites with 3-3 connectivity by injecting polymer for hydrostatic sensors. Ceramics International 30:1, pages 69-74.
Crossref
Yi-Heng Chen & Tian Jian Lu. 2003. 121 215 .
G. K. AnanthasureshEmílio Carlos Nelli Silva. 2003. Optimal Synthesis Methods for MEMS. Optimal Synthesis Methods for MEMS 155 191 .
V. Yu. Topolov & A. V. Turik. (2001) Porous piezoelectric composites with extremely high reception parameters. Technical Physics 46:9, pages 1093-1100.
Crossref
Ruibin Liu, K.A. Harasiewicz & F.S. Foster. (2001) Interdigital pair bonding for high frequency (20-50 MHz) ultrasonic composite transducers. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 48:1, pages 299-306.
Crossref
T. Ritter, Xuecang Geng, K. Kirk Shung, P.D. Lopath, Seung-Eek Park & T.R. Shrout. (2000) Single crystal PZN/PT-polymer composites for ultrasound transducer applications. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 47:4, pages 792-800.
Crossref
E. C. Nelli Silva, J. S. Ono Fonseca, F. Montero de Espinosa, A. T. Crumm, G. A. Brady, J. W. Halloran & N. Kikuchi. (1999) Design of piezocomposite materials and piezoelectric transducers using topology optimization—Part I. Archives of Computational Methods in Engineering 6:2, pages 117-182.
Crossref
L. V. Gibiansky & S. Torquato. (2012) Matrix laminate composites: Realizable approximations for the effective moduli of piezoelectric dispersions. Journal of Materials Research 14:1, pages 49-63.
Crossref
Marco Avellaneda & Pieter J. Swart. (1998) Calculating the performance of 1–3 piezoelectric composites for hydrophone applications: An effective medium approach. The Journal of the Acoustical Society of America 103:3, pages 1449-1467.
Crossref
J.B. Castillero, J.A. Otero, R.R. Ramos & Alain Bourgeat. (1998) Asymptotic homogenization of laminated piezocomposite materials. International Journal of Solids and Structures 35:5-6, pages 527-541.
Crossref
Robert E. Newnham. 1998. Mathematics of Multiscale Materials. Mathematics of Multiscale Materials 209 211 .
Robert E. Newnham. (2013) Molecular Mechanisms in Smart Materials. MRS Bulletin 22:5, pages 20-34.
Crossref
J. Bennett & G. Hayward. (1997) Design of 1-3 piezocomposite hydrophones using finite element analysis. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 44:3, pages 565-574.
Crossref
L.V. Gibiansky & S. Torquato. (1997) On the use of homogenization theory to design optimal piezocomposites for hydrophone applications. Journal of the Mechanics and Physics of Solids 45:5, pages 689-708.
Crossref
L. V. Gibiansky & S. Torquato. (1997) Optimal design of 1-3 composite piezoelectrics. Structural Optimization 13:1, pages 23-28.
Crossref
J.F. Fernandez, A. Dogan, Q.M. Zhang, J.F. Tressler & R.E. Newnham. (1995) Hollow piezoelectric composites. Sensors and Actuators A: Physical 51:2-3, pages 183-192.
Crossref
Greg P. Carman, Kwok-Shun Cheung & Donny Wang. (2016) Micro-Mechanical Model of a Composite Containing a Conservative Nonlinear Electro-Magneto-Thermo-Mechanical Material. Journal of Intelligent Material Systems and Structures 6:5, pages 691-699.
Crossref
L. Li & N. R. Sottos. (1995) Improving hydrostatic performance of 1-3 piezocomposites. Journal of Applied Physics 77:9, pages 4595-4603.
Crossref
L. Li & N. R. Sottos. (2016) Predictions of Static Displacements in 1-3 Piezocomposites. Journal of Intelligent Material Systems and Structures 6:2, pages 169-180.
Crossref
R. E. Newnham, J. F. Fernandez, K. A. Markowski, J. T. Fielding, A. Dogan & J. Wallis. (2011) Composite Piezoelectric Sensors and Actuators. MRS Proceedings 360.
Crossref
R.E. Newnham & K.A. Markowski. (1994) Composite transducers and actuators. Composite transducers and actuators.
Q. M. Zhang, Wenwu Cao, H. Wang & L. E. Cross. (1993) Characterization of the performance of 1–3 type piezocomposites for low-frequency applications. Journal of Applied Physics 73:3, pages 1403-1410.
Crossref
W.A. Smith. (1993) Modeling 1-3 composite piezoelectrics: hydrostatic response. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 40:1, pages 41-49.
Crossref
A. K. Tripathi, T. C. Goel & P. K. C. Pillai. (1993) Effect of temperature on the charge-field hysteresis phenomena in lanthanum-doped lead zirconate titanate-poly(vinylidine fluoride) composite. Journal of Materials Science Letters 12:24, pages 1945-1946.
Crossref
Wenwu Cao, Q. M. Zhang & L. E. Cross. (1992) Theoretical study on the static performance of piezoelectric ceramic-polymer composites with 1-3 connectivity. Journal of Applied Physics 72:12, pages 5814-5821.
Crossref
J.A. Hossack & B.A. Auld. (1992) Improved efficiency piezoelectric ceramic/polymer composite transducers. Improved efficiency piezoelectric ceramic/polymer composite transducers.
C. Richard, P. Eyraud, L. Eyraud, D. Audigier & M. Richard. (1992) An optimization of 1.3.1 PZT-polymer composite for deep underwater hydrophone application. An optimization of 1.3.1 PZT-polymer composite for deep underwater hydrophone application.
H. Jensen. (1991) Determination of macroscopic electro-mechanical characteristics of 1-3 piezoceramic/polymer composites by a concentric tube model. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 38:6, pages 591-594.
Crossref
W.A. Smith. (1991) Optimizing electromechanical coupling in piezocomposites using polymers with negative Poisson's ratio. Optimizing electromechanical coupling in piezocomposites using polymers with negative Poisson's ratio.
S. A. Gridnev & N. G. Pavlova. 1991. MICC 90. MICC 90 928 930 .
W.A. Smith. (1990) Calculating the hydrophone response of piezoceramic-rod/piezopolymer-matrix composites. Calculating the hydrophone response of piezoceramic-rod/piezopolymer-matrix composites.
R.Y. Ting, A.A. Shaulov & W.A. Smith. (1990) Piezoelectric properties of 1-3 composites of a calcium-modified lead titanate in epoxy resins. Piezoelectric properties of 1-3 composites of a calcium-modified lead titanate in epoxy resins.
S.L. Swartz. (1990) Topics in electronic ceramics. IEEE Transactions on Electrical Insulation 25:5, pages 935-987.
Crossref
W.A. Smith. (1989) The role of piezocomposites in ultrasonic transducers. The role of piezocomposites in ultrasonic transducers.
W.A. Smith, A.A. Shaulov & R.Y. Ting. (1988) Enhanced lateral electromechanical coupling in lead-titanate-rod/polymer piezoelectric composites. Enhanced lateral electromechanical coupling in lead-titanate-rod/polymer piezoelectric composites.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.