269
Views
41
CrossRef citations to date
0
Altmetric
Original Articles

Flow characteristics of the hydraulic jump in a stilling basin with an abrupt bottom rise

&
Pages 101-113 | Received 04 Jul 1984, Published online: 21 Jan 2010

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (5)

Nahid Pourabdollah, Manouchehr Heidarpour, Jahangir Abedi Koupai & Jahanshir Mohamadzadeh- Habili. (2022) Hydraulic jump control using stilling basin with adverse slope and positive step. ISH Journal of Hydraulic Engineering 28:1, pages 10-17.
Read now
S. Pagliara. (1996) Length And Depth Of Hydraulic Jump In Sloping Channels. Journal of Hydraulic Research 34:1, pages 137-144.
Read now
Ali A. Quraishi & Abdullah M. Al-Brahim. (1992) Hydraulic jump in sloping channel with positive or negative step. Journal of Hydraulic Research 30:6, pages 769-782.
Read now
Willi H. Hager & Robert Wanoschek. (1987) Hydraulic jump in triangular channel. Journal of Hydraulic Research 25:5, pages 549-564.
Read now
Willi H. Hager & Nicola V. Bretz. (1986) Hydraulic jumps at positive and negative steps. Journal of Hydraulic Research 24:4, pages 237-253.
Read now

Articles from other publishers (36)

Muhammad Waqas Zaffar, Ishtiaq Hassan, Zulfiqar Ali, Kaleem Sarwar, Muhammad Hassan, Muhammad Taimoor Mustafa & Faizan Ahmed Waris. (2023) Numerical investigation of hydraulic jumps with USBR and wedge-shaped baffle block basins for lower tailwater. AQUA — Water Infrastructure, Ecosystems and Society 72:11, pages 2081-2108.
Crossref
Giada Varra, Renata Della Morte, Luigi Cimorelli & Luca Cozzolino. (2023) Coping with geometric discontinuities in porosity-based shallow water models. Physics of Fluids 35:10.
Crossref
Asma Rabiei, Jahanshir Mohammadzadeh-Habili, Aaron Anil Chadee, Seyed Mohammadali Zomorodian, Mohammed Jameel & Hazi Mohammad Azamathulla. (2023) Performance of a right-triangle stilling basin: a laboratory investigation. Water Supply.
Crossref
Muhammad Waqas Zaffar & Ishtiaq Hassan. (2023) Numerical investigation of hydraulic jump for different stilling basins using FLOW-3D. AQUA — Water Infrastructure, Ecosystems and Society 72:7, pages 1320-1343.
Crossref
Yu Zhou, Jianhua Wu, Hai Zhao, Jianyong Hu & Fuqing Bai. (2023) Hydraulic Performance of Wave-Type Flow at a Sill-Controlled Stilling Basin. Applied Sciences 13:8, pages 5053.
Crossref
Raj Kumar Chaulagain, Laxman Poudel & Sanjeev Maharjan. (2023) Experimental investigation on flow approach profile for comparison of surface velocity at the inlet of the vertical ultra-low head hydro turbine using a non-rotating model. Engineering Science and Technology, an International Journal 40, pages 101367.
Crossref
M. Hanif ChaudhryM. Hanif Chaudhry. 2022. Open-Channel Flow. Open-Channel Flow 203 249 .
Milad Mohammadi, Mohammad Nazari-Sharabian & Moses Karakouzian. (2021) A Novel Analytical Method for Evaluating the Characteristics of Hydraulic Jump at a Positive Step. Water 13:15, pages 2005.
Crossref
Sherry L. Hunt & Kem C. Kadavy. (2021) Types I, II, III, and IV Stilling Basin Performance for Stepped Chutes Applied to Embankment Dams. Journal of Hydraulic Engineering 147:6.
Crossref
Nihat Eroğlu & Kerem Taştan. (2020) Local Energy Losses for Wave-Type Flows at Abrupt Bottom Changes. Journal of Irrigation and Drainage Engineering 146:9.
Crossref
C S JamesC S James. 2020. Hydraulic Structures. Hydraulic Structures 183 241 .
Nahid Pourabdollah, Manouchehr Heidarpour & Jahangir Abedi Koupai. (2019) An Experimental and Analytical Study of a Hydraulic Jump Over a Rough Bed with an Adverse Slope and a Positive Step. Iranian Journal of Science and Technology, Transactions of Civil Engineering 43:3, pages 551-561.
Crossref
Nikolaos D. Katopodes. 2019. Free-Surface Flow:. Free-Surface Flow: 322 415 .
Nicolò Viti, Daniel Valero & Carlo Gualtieri. (2018) Numerical Simulation of Hydraulic Jumps. Part 2: Recent Results and Future Outlook. Water 11:1, pages 28.
Crossref
Rasoul DaneshfarazSina SadeghfamAli Ghahramanzadeh. (2017) Three-dimensional numerical investigation of flow through screens as energy dissipators. Canadian Journal of Civil Engineering 44:10, pages 850-859.
Crossref
Ali R. Vatankhah. (2017) General Solution of Conjugate Depth Ratio (Power-Law Channels). Journal of Irrigation and Drainage Engineering 143:9.
Crossref
Arnau Bayon, Daniel Valero, Rafael García-Bartual, Francisco ​José Vallés-Morán & P. Amparo López-Jiménez. (2016) Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump. Environmental Modelling & Software 80, pages 322-335.
Crossref
Arnau Bayon-Barrachina & Petra Amparo Lopez-Jimenez. (2015) Numerical analysis of hydraulic jumps using OpenFOAM. Journal of Hydroinformatics 17:4, pages 662-678.
Crossref
S. Kateb, M. Debabeche & A. Benmalek. (2013) Étude expérimentale de l’effet de la marche positive sur le ressaut hydraulique évoluant dans un canal trapézoïdal. Canadian Journal of Civil Engineering 40:10, pages 1014-1018.
Crossref
S. A. Khan. (2013) An Analytical Analysis of Hydraulic Jump in Triangular Channel: A Proposed Model. Journal of The Institution of Engineers (India): Series A 94:2, pages 83-87.
Crossref
M. Hanif Chaudhry. 2008. Open-Channel Flow. Open-Channel Flow 199 245 .
Willi H. HagerWilli H. Hager. 1992. Energy Dissipators and Hydraulic Jump. Energy Dissipators and Hydraulic Jump 145 150 .
Willi H. HagerWilli H. Hager. 1992. Energy Dissipators and Hydraulic Jump. Energy Dissipators and Hydraulic Jump 129 144 .
Willi H. HagerWilli H. Hager. 1992. Energy Dissipators and Hydraulic Jump. Energy Dissipators and Hydraulic Jump 109 128 .
Willi H. HagerWilli H. Hager. 1992. Energy Dissipators and Hydraulic Jump. Energy Dissipators and Hydraulic Jump 101 108 .
Willi H. HagerWilli H. Hager. 1992. Energy Dissipators and Hydraulic Jump. Energy Dissipators and Hydraulic Jump 67 76 .
Willi H. HagerWilli H. Hager. 1992. Energy Dissipators and Hydraulic Jump. Energy Dissipators and Hydraulic Jump 53 66 .
Willi H. HagerWilli H. Hager. 1992. Energy Dissipators and Hydraulic Jump. Energy Dissipators and Hydraulic Jump 41 52 .
Willi H. HagerWilli H. Hager. 1992. Energy Dissipators and Hydraulic Jump. Energy Dissipators and Hydraulic Jump 5 40 .
Willi H. HagerWilli H. Hager. 1992. Energy Dissipators and Hydraulic Jump. Energy Dissipators and Hydraulic Jump 229 238 .
Willi H. HagerWilli H. Hager. 1992. Energy Dissipators and Hydraulic Jump. Energy Dissipators and Hydraulic Jump 213 228 .
Willi H. HagerWilli H. Hager. 1992. Energy Dissipators and Hydraulic Jump. Energy Dissipators and Hydraulic Jump 185 212 .
Willi H. HagerWilli H. Hager. 1992. Energy Dissipators and Hydraulic Jump. Energy Dissipators and Hydraulic Jump 175 184 .
Willi H. HagerWilli H. Hager. 1992. Energy Dissipators and Hydraulic Jump. Energy Dissipators and Hydraulic Jump 151 174 .
Willi H. HagerWilli H. Hager. 1992. Energy Dissipators and Hydraulic Jump. Energy Dissipators and Hydraulic Jump 1 4 .
Willi H. Hager, Bruno Basler & Robert Wanoschek. (1986) Incipient Jump Condition for Ventilated Sill Flow. Journal of Hydraulic Engineering 112:10, pages 953-963.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.