265
Views
82
CrossRef citations to date
0
Altmetric
Original Articles

Numerical modeling of flow and settling in primary rectangular clarifiers

, &
Pages 665-682 | Received 20 Mar 1989, Published online: 19 Jan 2010

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (4)

Amol V. Ganjare & Ashwin W. Patwardhan. (2020) CFD simulations of single-phase flow in settling tanks: comparison of turbulence models. Indian Chemical Engineer 62:4, pages 413-426.
Read now
Anthoula Gkesouli, Maria Nitsa, Anastasios I. Stamou, Peter Rutschmann & Minh Duc Bui. (2016) Modeling the effect of wind in rectangular settling tanks for water supply. Desalination and Water Treatment 57:54, pages 26345-26354.
Read now
M. Athar, U.C. Kothyari & R.J. Garde. (2003) Distribution of sediment concentration in the vortex chamber type sediment extractor. Journal of Hydraulic Research 41:4, pages 427-438.
Read now
B. M. Sumer. (1991) Design Of Settling Basins. Journal of Hydraulic Research 29:1, pages 136-143.
Read now

Articles from other publishers (78)

Peng Wang, Nansha Ye, Yu Han & Xiangli He. (2024) Experimental Study on the Sedimentation Performance of an Arc-Plate Linear Sedimentation Tank. Water 16:8, pages 1075.
Crossref
F. Salmasi, J. Abraham & A. Salmasi. (2023) Evaluation of various design models of irrigation sedimentation basins. International Journal of Environmental Science and Technology 20:10, pages 11301-11308.
Crossref
Sabri Dairi, Wassila Khoualdia, Dounia Mrad, Ali Bouamrane, Yassine Djebbar & Habib Abida. (2023) Improving secondary settling tanks performance by applying CFD models for design and operation. Water Supply.
Crossref
Nagehan Şahin & Rahim Şibil. (2023) Hydrodynamic performance evaluation of screening on the physical unit operations in wastewater treatment based on experimentally validated CFD computations. Process Safety and Environmental Protection 171, pages 136-151.
Crossref
Mk Raeesh, Thiyam Tamphasana Devi & Kirpa Hirom. (2022) Recent Developments on Application of Different Turbulence and Multiphase Models in Sedimentation Tank Modeling—a Review. Water, Air, & Soil Pollution 234:1.
Crossref
Mohammad Javadi Rad, Pedram Eshaghieh Firoozabadi & Fatemeh Rostami. (2022) Numerical Investigation of the Effect Dimensions of Rectangular Sedimentation Tanks on Its Hydraulic Efficiency Using Flow-3D Software. Acta Technica Jaurinensis 15:4, pages 207-220.
Crossref
Haochen Li & John Sansalone. (2022) Implementing machine learning to optimize the cost-benefit of urban water clarifier geometrics. Water Research 220, pages 118685.
Crossref
Haochen Li & John Sansalone. (2022) Interrogating common clarification models for unit operation systems with dynamic similitude. Water Research 215, pages 118265.
Crossref
Jun Yan, Meng Chen, Linjuan Xu, Qingyan Liu, Hongling Shi & Na He. (2022) Mike 21 Model Based Numerical Simulation of the Operation Optimization Scheme of Sedimentation Basin. Coatings 12:4, pages 478.
Crossref
Haochen Li & John Sansalone. (2021) Benchmarking Reynolds-Averaged Navier–Stokes Turbulence Models for Water Clarification Systems. Journal of Environmental Engineering 147:9.
Crossref
A. G. Griborio, J. A. Rodríguez, L. Enriquez & J. A. McCorquodale. (2021) Use of three-dimensional computational fluid dynamics model for a new configuration of circular primary settling tank. Water Science and Technology 84:2, pages 333-348.
Crossref
Haochen Li & John Sansalone. (2021) Representation of Near-Wall Particle Fate in a Eulerian–Lagrangian Approach for Clarifier Unit Operations. Journal of Environmental Engineering 147:7.
Crossref
Haochen Li & John Sansalone. (2021) CFD with Evolutionary Optimization for Stormwater Basin Retrofits. Journal of Environmental Engineering 147:7.
Crossref
Haochen Li, S. Balachandar & John Sansalone. (2021) Discordance of Tracer Transport and Particulate Matter Fate in a Baffled Clarification System. Journal of Fluids Engineering 143:5.
Crossref
Haochen Li, David Spelman & John Sansalone. (2021) Baffled clarification basin hydrodynamics and elution in a continuous time domain. Journal of Hydrology 595, pages 125958.
Crossref
Haochen Li, S. Balachandar & John Sansalone. (2021) Large-eddy simulation of flow turbulence in clarification systems. Acta Mechanica 232:4, pages 1389-1412.
Crossref
Cheng Peng, Song Gui Chen & Yi Na Wang. (2021) Experimental study on sand blocking characteristics of silt curtain in the ocean nearshore settling basin. IOP Conference Series: Earth and Environmental Science 621:1, pages 012078.
Crossref
H. Li & J. Sansalone. (2020) CFD as a Complementary Tool to Benchmark Physical Testing of PM Separation by Unit Operations. Journal of Environmental Engineering 146:11.
Crossref
Abolghasem Alighardashi & Danial Goodarzi. (2019) Simulation of depth and wind effects on the hydraulic efficiency of sedimentation tanks. Water and Environment Journal 34:3, pages 432-440.
Crossref
S Zhang, R H Wang & J J Xu. (2020) Numerical Simulations to Optimize the Factors Affecting Particle Removal in a Double-storey Sedimentation Tank. IOP Conference Series: Earth and Environmental Science 510:4, pages 042041.
Crossref
Timothy N. Hunter, Jeff Peakall, Darrell Egarr, David M.J. Cowell, Steven Freear, Alastair S. Tonge, Lucy Horton, Hugh P. Rice, Iain Smith, Kevin Malone, David Burt, Martyn Barnes, Geoff Randall, Simon Biggs & Michael Fairweather. (2020) Concentration profiling of a horizontal sedimentation tank utilising a bespoke acoustic backscatter array and CFD simulations. Chemical Engineering Science 218, pages 115560.
Crossref
Haiwen Gao & Michael K. Stenstrom. (2019) Development and applications in computational fluid dynamics modeling for secondary settling tanks over the last three decades: A review. Water Environment Research 92:6, pages 796-820.
Crossref
Keyuan Wang, Yunkai Li, Shumei Ren & Peiling Yang. (2020) Prototype Observation of Flow Characteristics in an Inclined-Tube Settling Tank for Fine Sandy Water Treatment. Applied Sciences 10:10, pages 3586.
Crossref
Shuo Zhang, Ruhua Wang & Jiajiong Xu. (2020) A CFD-based simulation study of a double-storey sedimentation tank for drinking water treatment. IOP Conference Series: Earth and Environmental Science 508:1, pages 012076.
Crossref
M.E. Valle Medina & J. Laurent. (2020) Incorporation of a compression term in a CFD model based on the mixture approach to simulate activated sludge sedimentation. Applied Mathematical Modelling 77, pages 848-860.
Crossref
Saeid Vahidifar, Mohammad Reza Saffarian & Ebrahim Hajidavalloo. (2019) Numerical simulation of particle-laden flow in an industrial wastewater sedimentation tank. Meccanica 54:15, pages 2367-2383.
Crossref
Elahe Chero, Mohammadamin Torabi, Hamidreza Zahabi, Anahita Ghafoorisadatieh & Keivan Bina. (2019) Numerical analysis of the circular settling tank. Drinking Water Engineering and Science 12:2, pages 39-44.
Crossref
Serena Conserva, Fabio Tatti, Vincenzo Torretta, Navarro Ferronato & Paolo Viotti. (2019) An Integrated Approach to the Biological Reactor–Sedimentation Tank System. Resources 8:2, pages 94.
Crossref
Haiwen Gao & Michael K. Stenstrom. (2019) Turbulence and interphase mass diffusion assumptions on the performance of secondary settling tanks. Water Environment Research 91:2, pages 101-110.
Crossref
The-Anh Nguyen, Nguyet Thi-Minh Dao, Mitsuharu Terashima & Hidenari Yasui. (2019) Improvement of Suspended Solids Removal Efficiency in Sedimentation Tanks by Increasing Settling Area Using Computational Fluid Dynamics. Journal of Water and Environment Technology 17:6, pages 420-431.
Crossref
The-anh Nguyen, Nguyet Thi-minh Dao, Bing Liu, Mitsuharu Terashima & Hidenari Yasui. (2019) Computational Fluid Dynamics Study on Attainable Flow Rate in a Lamella Settler by Increasing Inclined Plates. Journal of Water and Environment Technology 17:2, pages 76-88.
Crossref
A. Gkesouli & A. Stamou. (2019) A CFD modeling procedure to assess the effect of wind in settling tanks. Journal of Hydroinformatics 21:1, pages 123-135.
Crossref
. 2019. Computational Techniques for Multiphase Flows. Computational Techniques for Multiphase Flows 597 618 .
Haiwen Gao & M.K. Stenstrom. (2018) Evaluation of three turbulence models in predicting the steady state hydrodynamics of a secondary sedimentation tank. Water Research 143, pages 445-456.
Crossref
Jong-Woong Choi, Sung-Taek Hong, Seong-Su Kim, Youn-Kwon Kim & No-Suk Park. (2017) A Study on Prediction of Sedimentation Efficiency for Sedimentation Basin using Lagrangian Method. Journal of Korean Society of Environmental Engineers 39:5, pages 229-236.
Crossref
R. W. Samstag, J. J. Ducoste, A. Griborio, I. Nopens, D. J. Batstone, J. D. Wicks, S. Saunders, E. A. Wicklein, G. Kenny & J. Laurent. (2016) CFD for wastewater treatment: an overview. Water Science and Technology 74:3, pages 549-563.
Crossref
Anastasios Stamou & Anthoula Gkesouli. (2015) Modeling settling tanks for water treatment using computational fluid dynamics. Journal of Hydroinformatics 17:5, pages 745-762.
Crossref
Mahdi Shahrokhi, Fatemeh Rostami, Md Azlin Md Said, Saeed Reza Sabbagh Yazdi & Syafalni Syafalni. (2012) Computational investigations of baffle configuration effects on the performance of primary sedimentation tanks. Water and Environment Journal 27:4, pages 484-494.
Crossref
Mahdi Shahrokhi, Fatemeh Rostami, Md Azlin Md Said & Syafalni. (2013) Numerical modeling of baffle location effects on the flow pattern of primary sedimentation tanks. Applied Mathematical Modelling 37:6, pages 4486-4496.
Crossref
Roza Tarpagkou & Asterios Pantokratoras. (2013) CFD methodology for sedimentation tanks: The effect of secondary phase on fluid phase using DPM coupled calculations. Applied Mathematical Modelling 37:5, pages 3478-3494.
Crossref
Mahdi ShahrokhiFatemeh RostamiMd. Azlin Md. SaidSaeed Reza Sabbagh Yazdi Syafalni. (2013) Experimental Investigation of the Influence of Baffle Position on the Flow Field, Sediment Concentration, and Efficiency of Rectangular Primary Sedimentation Tanks. Journal of Hydraulic Engineering 139:1, pages 88-94.
Crossref
Mahdi Shahrokhi, Fatemeh Rostami, Md Azlin Md Said, Saeed Reza Sabbagh Yazdi & Syafalni. (2012) The effect of number of baffles on the improvement efficiency of primary sedimentation tanks. Applied Mathematical Modelling 36:8, pages 3725-3735.
Crossref
Mahdi ShahrokhiFatemeh RostamiMd Azlin Md SaidSaeid-Reza Sabbagh-YazdiSyafalni SyafalniRozi Abdullah. (2012) The effect of baffle angle on primary sedimentation tank efficiency. Canadian Journal of Civil Engineering 39:3, pages 293-303.
Crossref
Mitsuharu TERASHIMA, Hidenari YASUI, Koichi SUTO, Chihiro INOUE & Tatsuya NOIKE. (2012) THE PARTICLE REMOVAL DETERIORATION BY INFLUENT TEMPERATURE RISING IN A SETTLING TANK AND THE EFFECT OF NEW BAFFLE - A COMPUTATIONAL FLUID DYNAMICS STUDY. Journal of Japan Society of Civil Engineers, Ser. G (Environmental Research) 68:7, pages III_387-III_394.
Crossref
Xiaofeng LiuMarcelo H. García. (2011) Computational Fluid Dynamics Modeling for the Design of Large Primary Settling Tanks. Journal of Hydraulic Engineering 137:3, pages 343-355.
Crossref
Wei Zhang, Zhihong Zou & Jun Sui. (2010) Numerical simulation of a horizontal sedimentation tank considering sludge recirculation. Journal of Environmental Sciences 22:10, pages 1534-1538.
Crossref
Baicang LiuJun MaLin LuoYuhua BaiShutao WangJing Zhang. (2010) Two-Dimensional LDV Measurement, Modeling, and Optimal Design of Rectangular Primary Settling Tanks. Journal of Environmental Engineering 136:5, pages 501-507.
Crossref
A. TamayolB. FiroozabadiM. A. Ashjari. (2010) Hydrodynamics of Secondary Settling Tanks and Increasing Their Performance Using Baffles. Journal of Environmental Engineering 136:1, pages 32-39.
Crossref
. 2010. Computational Techniques for Multiphase Flows. Computational Techniques for Multiphase Flows 607 626 .
Anastasios I. StamouGeorgios TheodoridisKonstantinos Xanthopoulos. (2009) Design of Secondary Settling Tanks Using a CFD Model. Journal of Environmental Engineering 135:7, pages 551-561.
Crossref
Anastasios I. Stamou. (2008) Improving the hydraulic efficiency of water process tanks using CFD models. Chemical Engineering and Processing: Process Intensification 47:8, pages 1179-1189.
Crossref
A. TamayolB. FiroozabadiG. Ahmadi. (2008) Effects of Inlet Position and Baffle Configuration on Hydraulic Performance of Primary Settling Tanks. Journal of Hydraulic Engineering 134:7, pages 1004-1009.
Crossref
Athanasia M. Goula, Margaritis Kostoglou, Thodoris D. Karapantsios & Anastasios I. Zouboulis. (2008) The effect of influent temperature variations in a sedimentation tank for potable water treatment—A computational fluid dynamics study. Water Research 42:13, pages 3405-3414.
Crossref
Athanasia M. Goula, Margaritis Kostoglou, Thodoris D. Karapantsios & Anastasios I. Zouboulis. (2008) A CFD methodology for the design of sedimentation tanks in potable water treatment. Chemical Engineering Journal 140:1-3, pages 110-121.
Crossref
Bai-Cang LiuJun MaShe-Hua HuangDa-Hong ChenWen-Xue Chen. (2008) Two-Dimensional Numerical Simulation of Primary Settling Tanks by Hybrid Finite Analytic Method. Journal of Environmental Engineering 134:4, pages 273-282.
Crossref
K. K. Singh, Mahesh Pal, C. S. P. Ojha & V. P. Singh. (2008) Estimation of Removal Efficiency for Settling Basins Using Neural Networks and Support Vector Machines. Journal of Hydrologic Engineering 13:3, pages 146-155.
Crossref
Gh. Naser, B. W. Karney & A. A. Salehi. (2007) Closure “Two-Dimensional Simulation Model of Sediment Removal and Flow in Rectangular Sedimentation Basin” by Gh. Naser, B. W. Karney, and A. A. Salehi. Journal of Environmental Engineering 133:9, pages 945-946.
Crossref
Anastasios Stamou. (2007) Discussion of “Two-Dimensional Simulation Model of Sediment Removal and Flow in Rectangular Sedimentation Basin” by Gh. Naser, B. W. Karney, and A. A. Salehi. Journal of Environmental Engineering 133:9, pages 944-945.
Crossref
Long Fan, Nong Xu, Xiyong Ke & Hanchang Shi. (2007) Numerical simulation of secondary sedimentation tank for urban wastewater. Journal of the Chinese Institute of Chemical Engineers 38:5-6, pages 425-433.
Crossref
J. Alex McCorquodale, Alonso Griborio, JianGuo Li, Harold Horneck & Nihar Biswas. (2007) Modeling a Retention Treatment Basin for CSO. Journal of Environmental Engineering 133:3, pages 263-270.
Crossref
B. Firoozabadi, A. Tamayol & G. Ahmadi. (2005) Effects of Inlet Position and Baffle Configuration on the Hydraulic Performance of Primary Settling Tanks. Effects of Inlet Position and Baffle Configuration on the Hydraulic Performance of Primary Settling Tanks.
D. Kleine & B. D. Reddy. (2005) Finite element analysis of flows in secondary settling tanks. International Journal for Numerical Methods in Engineering 64:7, pages 849-876.
Crossref
H.S. Kim, M.S. Shin, D.S. Jang, S.H. Jung & J.H. Jin. (2005) Study of flow characteristics in a secondary clarifier by numerical simulation and radioisotope tracer technique. Applied Radiation and Isotopes 63:4, pages 519-526.
Crossref
I. Nopens, T. Koegst, K. Mahieu & P. A. Vanrolleghem. (2005) PBM and activated sludge flocculation: From experimental data to calibrated model. AIChE Journal 51:5, pages 1548-1557.
Crossref
Tae Hoon Yoon & Seung Oh Lee. (2000) Hydraulic behavior and removal efficiency of settling tanks. KSCE Journal of Civil Engineering 4:1, pages 53-57.
Crossref
K. G. Ranga RajuU. C. KothyariSomya SrivastavManish Saxena. (1999) Sediment Removal Efficiency of Settling Basins. Journal of Irrigation and Drainage Engineering 125:5, pages 308-314.
Crossref
J. Ph. Chancelier, M. Cohen de Lara & F. Pacard. (1997) A stochastic approach to model bottom boundary conditions and compute efficiency in a settling tank. Stochastic Hydrology and Hydraulics 11:6, pages 449-457.
Crossref
T. Matko, N. Fawcett, A. Sharp & T. Stephenson. (1996) Recent Progress in the Numerical Modelling of Wastewater Sedimentation Tanks. Process Safety and Environmental Protection 74:4, pages 245-258.
Crossref
G Quarini, H Innes, M Smith & D Wise. (2006) Hydrodynamic Modelling of Sedimentation Tanks. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 210:2, pages 83-91.
Crossref
Anastasios I. Stamou. (1994) Discussion of “ Modeling of Rectangular Settling Tanks ” by Siping Zhou and John A. McCorquodale (October, 1992, Vol. 118, No. 10) . Journal of Hydraulic Engineering 120:2, pages 277-279.
Crossref
László Szalai, Peter Krebs & Wolfgang Rodi. (1994) Simulation of Flow in Circular Clarifiers with and without Swirl. Journal of Hydraulic Engineering 120:1, pages 4-21.
Crossref
John I. Finnie. 1994. Computer Modeling of Free-Surface and Pressurized Flows. Computer Modeling of Free-Surface and Pressurized Flows 205 239 .
H. E. Schulz & P. Krebs. 1994. Computational Methods in Water Resources X. Computational Methods in Water Resources X 1247 1254 .
Anastasios I. Stamou. 1993. Engineering Turbulence Modelling and Experiments. Engineering Turbulence Modelling and Experiments 261 270 .
A.I. Stamou. (1992) Improving the numerical modeling of river water quality by using high order difference schemes. Water Research 26:12, pages 1563-1570.
Crossref
D. A. Lyn, A. I. Stamou & W. Rodi. (1992) Density Currents and Shear‐Induced Flocculation in Sedimentation Tanks. Journal of Hydraulic Engineering 118:6, pages 849-867.
Crossref
A.I. Stamou. (1991) On the prediction of flow and mixing in settling tanks using a curvature-modified k-ϵ model. Applied Mathematical Modelling 15:7, pages 351-358.
Crossref
Eric W. Adams & Wolfgang Rodi. (1990) Modeling Flow and Mixing in Sedimentation Tanks. Journal of Hydraulic Engineering 116:7, pages 895-913.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.