Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 98, 2000 - Issue 20
163
Views
46
CrossRef citations to date
0
Altmetric
Original Articles

Monte Carlo simulations of neon and argon using ab initio potentials

&
Pages 1603-1616 | Received 18 Oct 1999, Accepted 29 May 2000, Published online: 01 Sep 2009

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (5)

Saeedeh Tashakor, Mohammad R. Noorbala, Pedram Payvandy, Hossein Mohammadi-Manesh & Mansoor Namazian. (2018) Introducing a novel method based on the imperialistic competitive algorithm to determine fluorine intermolecular potential from ab initio calculations and calculation of some properties via MD simulations. Molecular Simulation 44:3, pages 243-253.
Read now
F. Senn, J. Wiebke, P. Schwerdtfeger & E. Pahl. (2015) Long-range contributions for the use of truncated pair potentials of molecular systems – application to nitrogen N2. Molecular Physics 113:13-14, pages 1585-1589.
Read now
S.M. Osman, R.N. Singh & I. Ali. (2008) Stability of the H2–(He, Ne, Ar) fluid mixtures. Molecular Physics 106:14, pages 1721-1732.
Read now
K. LEONHARD & U.K. DEITERS. (2002) Monte Carlo simulations of nitrogen using an ab initio potential. Molecular Physics 100:15, pages 2571-2585.
Read now

Articles from other publishers (41)

Vahideh Alizadeh, Marco Garofalo, Carsten Urbach & Barbara Kirchner. (2024) A Hybrid Monte Carlo study of argon solidification. Zeitschrift für Naturforschung B 79:4, pages 283-291.
Crossref
Kristian Kříž, Paul J. van Maaren & David van der Spoel. (2024) Impact of Combination Rules, Level of Theory, and Potential Function on the Modeling of Gas- and Condensed-Phase Properties of Noble Gases. Journal of Chemical Theory and Computation 20:6, pages 2362-2376.
Crossref
Li Zuo, Pan Xu, Yan-Hui Wang & Bo Song. (2024) Accurate thermodynamic properties of the neon fluid from ab initio potentials and uncertainty assessments of simulation data. Journal of Molecular Liquids 397, pages 124132.
Crossref
Sana Dridi, Mounir Ben Amar, Manef Abderraba & Jean-Philippe Passarello. (2022) Development of a fully analytical equation of state using ab initio interaction potentials. Application to pure simple fluids: Noble gases Ne, Ar, Kr, and Xe. Fluid Phase Equilibria 562, pages 113563.
Crossref
Philipp Ströker, Robert Hellmann & Karsten Meier. (2022) Thermodynamic properties of krypton from Monte Carlo simulations using ab initio potentials . The Journal of Chemical Physics 157:11.
Crossref
Philipp Ströker, Robert Hellmann & Karsten Meier. (2022) Thermodynamic properties of argon from Monte Carlo simulations using ab initio potentials . Physical Review E 105:6.
Crossref
Ulrich K. Deiters & Richard J. Sadus. (2021) Interatomic Interactions Responsible for the Solid–Liquid and Vapor–Liquid Phase Equilibria of Neon. The Journal of Physical Chemistry B 125:30, pages 8522-8531.
Crossref
Akshay Krishna A.K.Eddie Wadbro, Christof Köhler, Pavlin Mitev, Peter Broqvist & Jolla Kullgren. (2021) CCS: A software framework to generate two-body potentials using Curvature Constrained Splines. Computer Physics Communications 258, pages 107602.
Crossref
Pham Van Tat & Tran Thai Hoa. (2020) Ab Initio Intermolecular Potential Energy Surfaces and Cross Second Virial Coefficients for the Dimer N 2 -NO . ACS Omega 5:21, pages 12539-12549.
Crossref
Qing-Yao Luo & Bo Song. (2019) Assessment of the “methodological” uncertainty of molecular dynamics simulations based on an ultra-accurate potential of helium-4 dimers. Results in Physics 15, pages 102679.
Crossref
Qing-Yao Luo & Bo Song. (2019) Accurate internal energy of argon fluid from a state-of-the-art ab initio potential with uncertainty estimations. Journal of Molecular Liquids 288, pages 110980.
Crossref
Ulrich K. Deiters & Richard J. Sadus. (2019) Two-body interatomic potentials for He, Ne, Ar, Kr, and Xe from ab initio data . The Journal of Chemical Physics 150:13.
Crossref
Richard J. Sadus. (2019) Two-body intermolecular potentials from second virial coefficient properties. The Journal of Chemical Physics 150:2.
Crossref
Caroline Desgranges & Jerome Delhommelle. (2019) Determination of mixture properties via a combined Expanded Wang-Landau simulations-Machine Learning approach. Chemical Physics Letters 715, pages 1-6.
Crossref
Pham Van Tat & Ulrich K. Deiters. (2019) Calculation of cross second virial coefficients using ab initio intermolecular potential energy surfaces for dimer H2-N2. Chemical Physics 517, pages 208-221.
Crossref
A. Eskandari Nasrabad & R. Laghaei. (2018) Thermodynamic and transport properties of nitrogen fluid: Molecular theory and computer simulations. Chemical Physics 506, pages 36-44.
Crossref
A.N. Akour, A.S. Sandouqa, B.R. Joudeh & H.B. Ghassib. (2018) Equation of State of 20 Ne gas in the temperature-range 27–36 K. Chinese Journal of Physics 56:1, pages 411-422.
Crossref
Eric Detmar, Simin Yazdi Nezhad & Ulrich K. Deiters. (2017) Determination of the Residual Entropy of Simple Mixtures by Monte Carlo Simulation. Langmuir 33:42, pages 11603-11610.
Crossref
Tat Pham Van & Ulrich K. Deiters. (2017) Calculation of second virial coefficients using ab initio intermolecular pair potentials for F2-F2 and H2-F2 dimers. Chemical Physics 485-486, pages 67-80.
Crossref
G. G. Malenkov. (2017) Helium, neon, and water. Journal of Structural Chemistry 58:1, pages 159-166.
Crossref
Maryna Vlasiuk, Federico Frascoli & Richard J. Sadus. (2016) Molecular simulation of the thermodynamic, structural, and vapor-liquid equilibrium properties of neon. The Journal of Chemical Physics 145:10.
Crossref
Caroline Desgranges & Jerome Delhommelle. (2016) Evaluation of the grand-canonical partition function using expanded Wang-Landau simulations. IV. Performance of many-body force fields and tight-binding schemes for the fluid phases of silicon. The Journal of Chemical Physics 144:12.
Crossref
Caroline Desgranges & Jerome Delhommelle. (2015) Many-Body Effects on the Thermodynamics of Fluids, Mixtures, and Nanoconfined Fluids. Journal of Chemical Theory and Computation 11:11, pages 5401-5414.
Crossref
Tat Pham Van & Ulrich K. Deiters. (2015) Calculation of intermolecular potentials for H 2 H 2 and H 2 O 2 dimers ab initio and prediction of second virial coefficients. Chemical Physics 457, pages 171-179.
Crossref
M. Bárcenas, Y. Reyes, A. Romero-Martínez, G. Odriozola & P. Orea. (2015) Coexistence and interfacial properties of a triangle-well mimicking the Lennard-Jones fluid and a comparison with noble gases. The Journal of Chemical Physics 142:7.
Crossref
Yueqiang Zhao, Zhengming Wu & Weiwei Liu. (2014) Statistical mechanical theory of fluid mixtures. Physica A: Statistical Mechanics and its Applications 393, pages 62-75.
Crossref
Richard Hatz, Markus Korpinen, Vesa Hänninen & Lauri Halonen. (2012) Characterization of the Dispersion Interactions and an ab Initio Study of van der Waals Potential Energy Parameters for Coinage Metal Clusters. The Journal of Physical Chemistry A 116:47, pages 11685-11693.
Crossref
S. V. Lishchuk. (2012) Role of three-body interactions in formation of bulk viscosity in liquid argon. The Journal of Chemical Physics 136:16.
Crossref
Mohsen Abbaspour & Elaheh K. Goharshadi. (2010) Computation of some thermodynamics, transport, structural properties, and new equation of state for fluid neon using a new intermolecular potential from molecular dynamics simulation. Theoretical Chemistry Accounts 127:5-6, pages 573-585.
Crossref
Stanley I. Sandler & Marcelo Castier. (2007) Computational quantum mechanics: An underutilized tool in thermodynamics. Pure and Applied Chemistry 79:8, pages 1345-1359.
Crossref
Krzysztof Szalewicz, Robert Bukowski & Bogumil Jeziorski. 2005. Theory and Applications of Computational Chemistry. Theory and Applications of Computational Chemistry 919 962 .
Stephen L. Garrison & Stanley I. Sandler. (2004) An Accurate Acetylene Intermolecular Potential for Phase Behavior Predictions from Quantum Chemistry. The Journal of Physical Chemistry B 108:49, pages 18972-18979.
Crossref
A. E. Nasrabad, R. Laghaei & U. K. Deiters. (2004) Prediction of the thermophysical properties of pure neon, pure argon, and the binary mixtures neon-argon and argon-krypton by Monte Carlo simulation using ab initio potentials . The Journal of Chemical Physics 121:13, pages 6423-6434.
Crossref
Muthusamy Venkatraj, Christoph Bratschi, Hanspeter Huber & Robert J Gdanitz. (2004) Monte Carlo simulations of vapor–liquid equilibria of neon using an accurate ab initio pair potential. Fluid Phase Equilibria 218:2, pages 285-289.
Crossref
Gabriele Raabe & Richard J. Sadus. (2003) Molecular simulation of the vapor–liquid coexistence of mercury. The Journal of Chemical Physics 119:13, pages 6691-6697.
Crossref
Afshin Eskandari Nasrabad & Ulrich K. Deiters. (2003) Prediction of thermodynamic properties of krypton by Monte Carlo simulation using ab initio interaction potentials . The Journal of Chemical Physics 119:2, pages 947-952.
Crossref
Eric M. Mas, Robert Bukowski & Krzysztof Szalewicz. (2003) Ab initio three-body interactions for water. II. Effects on structure and energetics of liquid . The Journal of Chemical Physics 118:10, pages 4404-4413.
Crossref
Muthusamy Venkatraj, Markus G. Müller, Hanspeter Huber & Robert J. Gdanitz. (2003) Calculation of Thermodynamical, Transport and Structural Properties of Neon in Liquid and Supercritical Phases by Molecular Dynamics Simulations Using an Accurate ab initio Pair Potential. Collection of Czechoslovak Chemical Communications 68:3, pages 627-643.
Crossref
Stephen L. Garrison & Stanley I. Sandler. (2002) On the use of ab initio interaction energies for the accurate calculation of thermodynamic properties . The Journal of Chemical Physics 117:23, pages 10571-10580.
Crossref
Jadran Vrabec, Jürgen Stoll & Hans Hasse. (2001) A Set of Molecular Models for Symmetric Quadrupolar Fluids. The Journal of Physical Chemistry B 105:48, pages 12126-12133.
Crossref
Robert Bukowski & Krzysztof Szalewicz. (2001) Complete ab initio three-body nonadditive potential in Monte Carlo simulations of vapor–liquid equilibria and pure phases of argon . The Journal of Chemical Physics 114:21, pages 9518-9531.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.