Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 111, 2013 - Issue 16-17: In Honour of Professor Kutzelnigg
380
Views
59
CrossRef citations to date
0
Altmetric
Invited Article

A scaling PNO–MP2 method using a hybrid OSV–PNO approach with an iterative direct generation of OSVs

, &
Pages 2463-2476 | Received 05 Feb 2013, Accepted 28 Mar 2013, Published online: 08 May 2013

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (1)

Marius S. Frank, Gunnar Schmitz & Christof Hättig. (2017) The PNO–MP2 gradient and its application to molecular geometry optimisations. Molecular Physics 115:3, pages 343-356.
Read now

Articles from other publishers (58)

Kesha SorathiaDamyan FrantzovDavid P. Tew. (2024) Improved CPS and CBS Extrapolation of PNO-CCSD(T) Energies: The MOBH35 and ISOL24 Data Sets. Journal of Chemical Theory and Computation 20:7, pages 2740-2750.
Crossref
Jun Yang. (2024) Making quantum chemistry compressive and expressive: Toward practical ab‐initio simulation. WIREs Computational Molecular Science 14:2.
Crossref
Jo S. Kurian, Hong-Zhou Ye, Ankit Mahajan, Timothy C. Berkelbach & Sandeep Sharma. (2023) Toward Linear Scaling Auxiliary-Field Quantum Monte Carlo with Local Natural Orbitals. Journal of Chemical Theory and Computation 20:1, pages 134-142.
Crossref
Hans-Joachim Werner & Andreas Hansen. (2023) Accurate Calculation of Isomerization and Conformational Energies of Larger Molecules Using Explicitly Correlated Local Coupled Cluster Methods in Molpro and ORCA. Journal of Chemical Theory and Computation 19:20, pages 7007-7030.
Crossref
Kazuma Uemura, Masaaki Saitow, Takaki Ishimaru & Takeshi Yanai. (2023) Local N -electron valence state perturbation theory using pair-natural orbitals based on localized virtual molecular orbitals . The Journal of Chemical Physics 158:15.
Crossref
Benjamin Helmich-Paris, Bernardo de Souza, Frank Neese & Róbert Izsák. (2021) An improved chain of spheres for exchange algorithm. The Journal of Chemical Physics 155:10.
Crossref
Georgi L. Stoychev, Alexander A. Auer, Jürgen Gauss & Frank Neese. (2021) DLPNO-MP2 second derivatives for the computation of polarizabilities and NMR shieldings. The Journal of Chemical Physics 154:16.
Crossref
Qianli Ma & Hans-Joachim Werner. (2021) Scalable Electron Correlation Methods. 8. Explicitly Correlated Open-Shell Coupled-Cluster with Pair Natural Orbitals PNO-RCCSD(T)-F12 and PNO-UCCSD(T)-F12. Journal of Chemical Theory and Computation 17:2, pages 902-926.
Crossref
David P. Tew. 2021. New Electron Correlation Methods and their Applications, and Use of Atomic Orbitals with Exponential Asymptotes. New Electron Correlation Methods and their Applications, and Use of Atomic Orbitals with Exponential Asymptotes 83 106 .
Igor Ying Zhang & Xin Xu. (2020) On the top rung of Jacob's ladder of density functional theory: Toward resolving the dilemma of SIE and NCE . WIREs Computational Molecular Science 11:1.
Crossref
Özlem Yönder, Gunnar Schmitz, Christof Hättig, Rochus Schmid, Paulo Debiagi, Christian Hasse, Andrea Locaspi & Tiziano Faravelli. (2020) Can Small Polyaromatics Describe Their Larger Counterparts for Local Reactions? A Computational Study on the H-Abstraction Reaction by an H-Atom from Polyaromatics. The Journal of Physical Chemistry A 124:46, pages 9626-9637.
Crossref
Kesha Sorathia & David P. Tew. (2020) Basis set extrapolation in pair natural orbital theories. The Journal of Chemical Physics 153:17.
Crossref
Marius S. Frank, Gunnar Schmitz & Christof Hättig. (2020) Implementation of the iterative triples model CC3 for excitation energies using pair natural orbitals and Laplace transformation techniques. The Journal of Chemical Physics 153:3.
Crossref
Arno Förster & Lucas Visscher. (2020) Double hybrid DFT calculations with Slater type orbitals . Journal of Computational Chemistry 41:18, pages 1660-1684.
Crossref
Qianli Ma & Hans-Joachim Werner. (2020) Scalable Electron Correlation Methods. 7. Local Open-Shell Coupled-Cluster Methods Using Pair Natural Orbitals: PNO-RCCSD and PNO-UCCSD. Journal of Chemical Theory and Computation 16:5, pages 3135-3151.
Crossref
Jakub Lang, Andrej Antalík, Libor Veis, Jan Brandejs, Jiří Brabec, Örs Legeza & Jiří Pittner. (2020) Near-Linear Scaling in DMRG-Based Tailored Coupled Clusters: An Implementation of DLPNO-TCCSD and DLPNO-TCCSD(T). Journal of Chemical Theory and Computation 16:5, pages 3028-3040.
Crossref
Masaaki Saitow & Takeshi Yanai. (2020) A multireference coupled-electron pair approximation combined with complete-active space perturbation theory in local pair-natural orbital framework. The Journal of Chemical Physics 152:11.
Crossref
Arno Förster, Mirko Franchini, Erik van Lenthe & Lucas Visscher. (2020) A Quadratic Pair Atomic Resolution of the Identity Based SOS-AO-MP2 Algorithm Using Slater Type Orbitals. Journal of Chemical Theory and Computation 16:2, pages 875-891.
Crossref
Ruiyi Zhou, Qiujiang Liang & Jun Yang. (2019) Complete OSV-MP2 Analytical Gradient Theory for Molecular Structure and Dynamics Simulations. Journal of Chemical Theory and Computation 16:1, pages 196-210.
Crossref
David P. Tew. (2019) Principal Domains in Local Correlation Theory. Journal of Chemical Theory and Computation 15:12, pages 6597-6606.
Crossref
Daniel Kats & Hans-Joachim Werner. (2019) Multi-state local complete active space second-order perturbation theory using pair natural orbitals (PNO-MS-CASPT2). The Journal of Chemical Physics 150:21.
Crossref
Peter Pinski & Frank Neese. (2019) Analytical gradient for the domain-based local pair natural orbital second order Møller-Plesset perturbation theory method (DLPNO-MP2). The Journal of Chemical Physics 150:16.
Crossref
Jakub Lang, Jiří Brabec, Masaaki Saitow, Jiří Pittner, Frank Neese & Ondřej Demel. (2019) Perturbative triples correction to domain-based local pair natural orbital variants of Mukherjee's state specific coupled cluster method. Physical Chemistry Chemical Physics 21:9, pages 5022-5038.
Crossref
Christine Krause & Hans-Joachim Werner. (2018) Scalable Electron Correlation Methods. 6. Local Spin-Restricted Open-Shell Second-Order Møller–Plesset Perturbation Theory Using Pair Natural Orbitals: PNO-RMP2. Journal of Chemical Theory and Computation 15:2, pages 987-1005.
Crossref
Justyna Kozłowska, Max Schwilk, Agnieszka Roztoczyńska & Wojciech Bartkowiak. (2018) Assessment of DFT for endohedral complexes' dipole moment: PNO-LCCSD-F12 as a reference method. Physical Chemistry Chemical Physics 20:46, pages 29374-29388.
Crossref
Chong Peng, Marjory C. Clement & Edward F. Valeev. (2018) State-Averaged Pair Natural Orbitals for Excited States: A Route toward Efficient Equation of Motion Coupled-Cluster. Journal of Chemical Theory and Computation 14:11, pages 5597-5607.
Crossref
Qianli Ma & Hans‐Joachim Werner. (2018) Explicitly correlated local coupled‐cluster methods using pair natural orbitals. WIREs Computational Molecular Science 8:6.
Crossref
Masaaki Saitow & Frank Neese. (2018) Accurate spin-densities based on the domain-based local pair-natural orbital coupled-cluster theory. The Journal of Chemical Physics 149:3.
Crossref
Gunnar Schmitz & Ove Christiansen. (2018) Assessment of the overlap metric in the context of RI-MP2 and atomic batched tensor decomposed MP2. Chemical Physics Letters 701, pages 7-14.
Crossref
Marius S. Frank & Christof Hättig. (2018) A pair natural orbital based implementation of CCSD excitation energies within the framework of linear response theory. The Journal of Chemical Physics 148:13.
Crossref
Jiri Brabec, Jakub Lang, Masaaki Saitow, Jiří Pittner, Frank Neese & Ondřej Demel. (2018) Domain-Based Local Pair Natural Orbital Version of Mukherjee’s State-Specific Coupled Cluster Method. Journal of Chemical Theory and Computation 14:3, pages 1370-1382.
Crossref
Peter Pinski & Frank Neese. (2018) Communication: Exact analytical derivatives for the domain-based local pair natural orbital MP2 method (DLPNO-MP2). The Journal of Chemical Physics 148:3.
Crossref
Qianli Ma & Hans-Joachim Werner. (2017) Scalable Electron Correlation Methods. 5. Parallel Perturbative Triples Correction for Explicitly Correlated Local Coupled Cluster with Pair Natural Orbitals. Journal of Chemical Theory and Computation 14:1, pages 198-215.
Crossref
David P. Tew. (2018) Communication: Quasi-robust local density fitting. The Journal of Chemical Physics 148:1.
Crossref
Benjamin Fiedler, Gunnar Schmitz, Christof Hättig & Joachim Friedrich. (2017) Combining Accuracy and Efficiency: An Incremental Focal-Point Method Based on Pair Natural Orbitals. Journal of Chemical Theory and Computation 13:12, pages 6023-6042.
Crossref
Thomas Kjærgaard, Pablo Baudin, Dmytro Bykov, Kasper Kristensen & Poul Jørgensen. (2017) The divide–expand–consolidate coupled cluster scheme. WIREs Computational Molecular Science 7:6.
Crossref
Qianli Ma, Max Schwilk, Christoph Köppl & Hans-Joachim Werner. (2017) Scalable Electron Correlation Methods. 4. Parallel Explicitly Correlated Local Coupled Cluster with Pair Natural Orbitals (PNO-LCCSD-F12). Journal of Chemical Theory and Computation 13:10, pages 4871-4896.
Crossref
Hans‐Joachim Werner, Christoph Köppl, Qianli Ma & Max Schwilk. 2017. Fragmentation. Fragmentation 1 79 .
Max Schwilk, Qianli Ma, Christoph Köppl & Hans-Joachim Werner. (2017) Scalable Electron Correlation Methods. 3. Efficient and Accurate Parallel Local Coupled Cluster with Pair Natural Orbitals (PNO-LCCSD). Journal of Chemical Theory and Computation 13:8, pages 3650-3675.
Crossref
Sebastian Höfener & Wim Klopper. (2017) Natural transition orbitals for the calculation of correlation and excitation energies. Chemical Physics Letters 679, pages 52-59.
Crossref
Gunnar Schmitz & Christof Hättig. (2017) Accuracy of Explicitly Correlated Local PNO-CCSD(T). Journal of Chemical Theory and Computation 13:6, pages 2623-2633.
Crossref
Péter R. Nagy & Mihály Kállay. (2017) Optimization of the linear-scaling local natural orbital CCSD(T) method: Redundancy-free triples correction using Laplace transform. The Journal of Chemical Physics 146:21.
Crossref
Gunnar Schmitz, Niels Kristian Madsen & Ove Christiansen. (2017) Atomic-batched tensor decomposed two-electron repulsion integrals. The Journal of Chemical Physics 146:13.
Crossref
Thomas Kjærgaard. (2017) The Laplace transformed divide-expand-consolidate resolution of the identity second-order Møller-Plesset perturbation (DEC-LT-RIMP2) theory method. The Journal of Chemical Physics 146:4.
Crossref
Gunnar Schmitz & Christof Hättig. (2016) Perturbative triples correction for local pair natural orbital based explicitly correlated CCSD(F12*) using Laplace transformation techniques. The Journal of Chemical Physics 145:23.
Crossref
Reinhold F. Fink. (2016) Why does MP2 work?. The Journal of Chemical Physics 145:18.
Crossref
Péter R. Nagy, Gyula Samu & Mihály Kállay. (2016) An Integral-Direct Linear-Scaling Second-Order Møller–Plesset Approach. Journal of Chemical Theory and Computation 12:10, pages 4897-4914.
Crossref
Benjamin Helmich-Paris & Lucas Visscher. (2016) Improvements on the minimax algorithm for the Laplace transformation of orbital energy denominators. Journal of Computational Physics 321, pages 927-931.
Crossref
Benjamin Helmich-Paris, Michal Repisky & Lucas Visscher. (2016) Laplace-transformed atomic orbital-based Møller–Plesset perturbation theory for relativistic two-component Hamiltonians. The Journal of Chemical Physics 145:1.
Crossref
Yang Min Wang, Christof Hättig, Simen Reine, Edward Valeev, Thomas Kjærgaard & Kasper Kristensen. (2016) Explicitly correlated second-order Møller-Plesset perturbation theory in a Divide-Expand-Consolidate (DEC) context. The Journal of Chemical Physics 144:20.
Crossref
Qianli Ma & Hans-Joachim Werner. (2015) Scalable Electron Correlation Methods. 2. Parallel PNO-LMP2-F12 with Near Linear Scaling in the Molecular Size. Journal of Chemical Theory and Computation 11:11, pages 5291-5304.
Crossref
Javier Segarra-Martí, Marco Garavelli & Francesco Aquilante. (2015) Multiconfigurational Second-Order Perturbation Theory with Frozen Natural Orbitals Extended to the Treatment of Photochemical Problems. Journal of Chemical Theory and Computation 11:8, pages 3772-3784.
Crossref
Peter Pinski, Christoph Riplinger, Edward F. Valeev & Frank Neese. (2015) Sparse maps—A systematic infrastructure for reduced-scaling electronic structure methods. I. An efficient and simple linear scaling local MP2 method that uses an intermediate basis of pair natural orbitals. The Journal of Chemical Physics 143:3.
Crossref
Ondřej Demel, Jiří Pittner & Frank Neese. (2015) A Local Pair Natural Orbital-Based Multireference Mukherjee’s Coupled Cluster Method. Journal of Chemical Theory and Computation 11:7, pages 3104-3114.
Crossref
Hans-Joachim Werner, Gerald Knizia, Christine Krause, Max Schwilk & Mark Dornbach. (2015) Scalable Electron Correlation Methods I.: PNO-LMP2 with Linear Scaling in the Molecular Size and Near-Inverse-Linear Scaling in the Number of Processors. Journal of Chemical Theory and Computation 11:2, pages 484-507.
Crossref
Benjamin Helmich & Christof Hättig. (2014) A pair natural orbital based implementation of ADC(2)-x: Perspectives and challenges for response methods for singly and doubly excited states in large molecules. Computational and Theoretical Chemistry 1040-1041, pages 35-44.
Crossref
Gunnar Schmitz, Christof Hättig & David P. Tew. (2014) Explicitly correlated PNO-MP2 and PNO-CCSD and their application to the S66 set and large molecular systems. Phys. Chem. Chem. Phys. 16:40, pages 22167-22178.
Crossref
Benjamin Helmich & Christof Hättig. (2013) A pair natural orbital implementation of the coupled cluster model CC2 for excitation energies. The Journal of Chemical Physics 139:8.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.