Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 69, 1990 - Issue 1
91
Views
21
CrossRef citations to date
0
Altmetric
Original Articles

Molecular dynamics simulation of molten Li2CO3 and Na2CO3

Pages 115-128 | Received 26 Jun 1989, Accepted 22 Aug 1989, Published online: 23 Aug 2006

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (3)

C.A. Bearchell & D.M. Heyes. (2002) Molecular modelling studies of calcium carbonate and its nanoparticles. Molecular Simulation 28:6-7, pages 517-538.
Read now
Susumu Okazaki, Morihiko Matsumoto & Isao Okada. (1993) Study of rotational and vibrational relaxation of the CO2- 3 ion in molten alkali carbonates by Raman spectroscopy. Molecular Physics 79:3, pages 611-621.
Read now
J.T.W.M. Tissen & G.J.M. Janssen. (1990) Molecular-dynamics simulation of molten alkali carbonates. Molecular Physics 71:2, pages 413-426.
Read now

Articles from other publishers (18)

Taixi Feng, Bo Yang, Jia Zhao & Guimin Lu. (2024) Elucidating the local structure and properties of molten Na2CO3-K2CO3 salts using Machine Learning-Driven molecular dynamics. Chemical Engineering Science 288, pages 119836.
Crossref
Dina Kussainova & Athanassios Z. Panagiotopoulos. (2023) Molecular Simulation of Lithium Carbonate Reactive Vapor–Liquid Equilibria Using a Deep Potential Model. Journal of Chemical & Engineering Data 69:1, pages 204-214.
Crossref
Anirban Mondal, Dina Kussainova, Shuwen Yue & Athanassios Z. Panagiotopoulos. (2022) Modeling Chemical Reactions in Alkali Carbonate–Hydroxide Electrolytes with Deep Learning Potentials. Journal of Chemical Theory and Computation 19:14, pages 4584-4595.
Crossref
Jeffrey M. Young, Anirban Mondal, Timothy A. Barckholtz, Gabor Kiss, Lucas Koziol & Athanassios Z. Panagiotopoulos. (2020) Predicting chemical reaction equilibria in molten carbonate fuel cells via molecular simulations. AIChE Journal 67:3.
Crossref
Anirban Mondal, Jeffrey M. Young, Timothy A. Barckholtz, Gabor Kiss, Lucas Koziol & Athanassios Z. Panagiotopoulos. (2020) Transport and Interfacial Properties of Mixed Molten Carbonate/Hydroxide Electrolytes by Molecular Dynamics Simulations. The Journal of Physical Chemistry C 124:43, pages 23532-23540.
Crossref
Gerrick E. Lindberg. (2019) Structure and diffusion of molten alkali carbonate salts at the liquid-vacuum interface. PeerJ Physical Chemistry 1, pages e3.
Crossref
Tetsu Kiyobayashi, Toshikatsu Kojima, Hiroyuki Ozaki & Kenji Kiyohara. (2019) Ionic conductivity of molten alkali-metal carbonates A2CO3 (A = Li, Na, K, Rb, and Cs) and binary mixtures (Li1−xCsx)2CO3 and (Li1−xKx)2CO3: A molecular dynamics simulation. The Journal of Chemical Physics 151:7.
Crossref
Elsa Desmaele, Nicolas Sator, Rodolphe Vuilleumier & Bertrand Guillot. (2019) Atomistic simulations of molten carbonates: Thermodynamic and transport properties of the Li2CO3—Na2CO3—K2CO3 system. The Journal of Chemical Physics 150:9.
Crossref
Sean M. Hurt & Rebecca A. Lange. (2019) The density of Li2CO3-Na2CO3-K2CO3-Rb2CO3-Cs2CO3-CaCO3-SrCO3-BaCO3 liquids: New measurements, ideal mixing, and systematic trends with composition. Geochimica et Cosmochimica Acta 248, pages 123-137.
Crossref
Mark Wilson, Mauro C. C. Ribeiro, Martin C. Wilding, Chris Benmore, J. K. R. Weber, Oliver Alderman, Anthony Tamalonis & J. B. Parise. (2018) Structure and Liquid Fragility in Sodium Carbonate. The Journal of Physical Chemistry A 122:4, pages 1071-1076.
Crossref
D. L. Roest, P. Ballone, D. Bedeaux & S. Kjelstrup. (2017) Molecular Dynamics Simulations of Metal/Molten Alkali Carbonate Interfaces. The Journal of Physical Chemistry C 121:33, pages 17827-17847.
Crossref
Dario Corradini, François-Xavier Coudert & Rodolphe Vuilleumier. (2016) Insight into the Li2CO3–K2CO3 eutectic mixture from classical molecular dynamics: Thermodynamics, structure, and dynamics. The Journal of Chemical Physics 144:10.
Crossref
Alistar Ottochian, Chiara Ricca, Frederic Labat & Carlo Adamo. (2016) Molecular dynamics simulations of a lithium/sodium carbonate mixture. Journal of Molecular Modeling 22:3.
Crossref
Ken Tasaki & Stephen J. Harris. (2010) Computational Study on the Solubility of Lithium Salts Formed on Lithium Ion Battery Negative Electrode in Organic Solvents. The Journal of Physical Chemistry C 114:17, pages 8076-8083.
Crossref
L.S. Barreto, K.A. Mort, R.A. Jackson & O.L. Alves. (2002) Molecular dynamics simulation of anhydrous lithium acetate: crystalline and molten phases. Journal of Non-Crystalline Solids 303:2, pages 281-290.
Crossref
Takahiro Koishi, Shun'i Kawase, Shigeru Tamaki & Toshikazu Ebisuzaki. (2000) Computer Simulation of Molten Li 2 CO 3 -K 2 CO 3 Mixtures . Journal of the Physical Society of Japan 69:10, pages 3291-3296.
Crossref
N. Koura, S. Kohara, K. Takeuchi, Setsuko Takahashi, L.A. Curtiss, M. Grimsditch & Marie-Louise Saboungi. (1996) Alkali carbonates: Raman spectroscopy, ab initio calculations, and structure. Journal of Molecular Structure 382:3, pages 163-169.
Crossref
Dominique Levesque & Jean Jacques Weis. 1995. The Monte Carlo Method in Condensed Matter Physics. The Monte Carlo Method in Condensed Matter Physics 121 204 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.