Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 86, 1995 - Issue 2
50
Views
76
CrossRef citations to date
0
Altmetric
Original Articles

C-NO2 dissociation energies and surface electrostatic potential maxima in relation to the impact sensitivities of some nitroheterocyclic molecules

&
Pages 251-255 | Received 05 Apr 1995, Accepted 17 May 1995, Published online: 23 Aug 2006

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (6)

Peter Politzer, Pat Lane & Jane S. Murray. (2017) Sensitivities of ionic explosives. Molecular Physics 115:5, pages 497-509.
Read now
Qing Ma, Long-Yu Liao, Bi-Bo Cheng, Gui-Juan Fan, Jing-Lun Huang & Jun Wang. (2016) Construction of New Insensitive Explosives: Fused N5-Chain N1,N3,N5-(1,2,3,4-Tetrazole -5-Nitro)-1,3,5-Triamino-2,4,6-Trinitrobenzene Derivatives. Polycyclic Aromatic Compounds 36:5, pages 639-655.
Read now
Hari Ji Singh & Manish Kumar Upadhyay. (2013) Nitro Derivatives of 1,3,5-Triazepine as Potential High-Energy Materials. Journal of Energetic Materials 31:4, pages 301-313.
Read now
P. Ravi, G.M. Gore, SuryaP. Tewari & A.K. Sikder. (2011) Theoretical Studies on Amino- and Methyl-Substituted Trinitrodiazoles. Journal of Energetic Materials 29:3, pages 209-227.
Read now

Articles from other publishers (70)

Samir Kenouche, Nassima Bachir, Wissam Bouchal & Jorge I. Martínez-Araya. (2024) Aromaticity of six-membered nitro energetic compounds through molecular electrostatic potential, magnetic, electronic delocalization and reactivity-based indices. Journal of Molecular Graphics and Modelling 129, pages 108728.
Crossref
Zhixiang Zhang, Yiding Ma, Chao Chen, Sergey V. Bondarchuk & Yingzhe Liu. (2024) A General Model of Impact Sensitivity for Nitrogen‐Rich Energetic Materials: A Combined Incremental Theory and Genetic Function Approximation Study. ChemPhysChem.
Crossref
Nassima Bachir, Samir Kenouche & Jorge I. Martínez-Araya. (2024) The effect of interactions on the sensitivity of C NO trigger bonds in FOX-7: Approach based on the QTAIM/EDA-NOCV analysis . Journal of Molecular Graphics and Modelling 126, pages 108645.
Crossref
Mambatta Haritha & Cherumuttathu H. Suresh. (2023) The fundamental nature and importance of electrostatic potential in hydrogen bond formation: a case study of heterocycles frequently observed in drugs. New Journal of Chemistry 47:37, pages 17323-17332.
Crossref
Rongzheng Zhang, Yuangang Xu, Feng Yang, Pengcheng Wang, Qiuhan Lin, Hui Huang & Ming Lu. (2023) A review of ultra-high temperature heat-resistant energetic materials. Defence Technology.
Crossref
Nassima Bachir, Samir Kenouche & Jorge I. Martínez-Araya. (2023) Theoretical investigation of the effect of interactions on the sensitivity of energetic N-nitro compounds . Journal of Molecular Graphics and Modelling 118, pages 108341.
Crossref
Chaoyang Zhang, Jing Huang & Rupeng BuChaoyang Zhang, Jing Huang & Rupeng Bu. 2023. Intrinsic Structures and Properties of Energetic Materials. Intrinsic Structures and Properties of Energetic Materials 115 156 .
Marc J. Cawkwell, Jack Davis, Nicholas Lease, Frank W. Marrs, Alexandra Burch, Suyana Ferreira & Virginia W. Manner. (2022) Understanding Explosive Sensitivity with Effective Trigger Linkage Kinetics. ACS Physical Chemistry Au 2:5, pages 448-458.
Crossref
Mambatta Haritha & Cherumuttathu H. Suresh. (2022) Hydration patterns of rings in drugs and relationship to lipophilicity: A DFT study. Journal of Computational Chemistry 43:7, pages 477-490.
Crossref
Peter Politzer & Jane S. Murray. 2022. Molecular Modeling of the Sensitivities of Energetic Materials. Molecular Modeling of the Sensitivities of Energetic Materials 173 194 .
M.J. Cawkwell, S.R. Ferreira, N. Lease & V.W. Manner. 2022. Molecular Modeling of the Sensitivities of Energetic Materials. Molecular Modeling of the Sensitivities of Energetic Materials 347 367 .
Gang Li & Chaoyang Zhang. (2020) Review of the molecular and crystal correlations on sensitivities of energetic materials. Journal of Hazardous Materials 398, pages 122910.
Crossref
M. J. Cawkwell, R. Perriot, N. Lease & V. W. Manner. Systematic study of the explosive chemical kinetics of derivatives of ETN and PETN at low pressure. Systematic study of the explosive chemical kinetics of derivatives of ETN and PETN at low pressure.
Alexander A. Aina, Alston J. MisquittaMaximillian J. S. PhippsSarah L. Price. (2019) Charge Distributions of Nitro Groups Within Organic Explosive Crystals: Effects on Sensitivity and Modeling. ACS Omega 4:5, pages 8614-8625.
Crossref
Gui-yun Hang, Wen-li Yu, Tao Wang & Jin-tao Wang. (2018) Theoretical investigations on the structures and properties of CL-20/TNT cocrystal and its defective models by molecular dynamics simulation. Journal of Molecular Modeling 24:7.
Crossref
Feng Yang, Yong‐Xiang Li, Xiao‐Xiao Chai & Xin Dang. (2018) Synthesis, Crystal Structure, and Performance of 2,2’,2’’,4,4’,4’’,6,6’,6’’‐Nonanitro‐1,1’ : 3’,1’’‐Terphenyl (NONA). Propellants, Explosives, Pyrotechnics 43:7, pages 679-684.
Crossref
Peter Politzer & Jane S. Murray. (2017) σ‐holes and π‐holes: Similarities and differences. Journal of Computational Chemistry 39:9, pages 464-471.
Crossref
Chunlei Wu, Shuhai Zhang, Fude Ren, Ruijun Gou & Gang Han. (2017) Theoretical insight into the cocrystal explosive of 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (CL-20)/1-Methyl-4,5-dinitro-1H-imidazole (MDNI). Journal of Theoretical and Computational Chemistry 16:07, pages 1750061.
Crossref
Gang Han, Rui-jun Gou, Fu-de Ren, Shu-hai Zhang, Chun-lei Wu & Shuang-fei Zhu. (2017) Theoretical investigation into the influence of molar ratio on binding energy, mechanical property and detonation performance of 1,3,5,7-tetranitro-1,3,5,7-tetrazacyclo octane (HMX)/1-methyl-4,5-dinitroimidazole (MDNI) cocrystal explosive. Computational and Theoretical Chemistry 1109, pages 27-35.
Crossref
Jianying Zhang, Gangling Chen & Xuedong Gong. (2017) QSPR modeling of detonation parameters and sensitivity of some energetic materials: DFT vs. PM3 calculations. Journal of Molecular Modeling 23:6.
Crossref
Ken-peng Song, Fu-de Ren, Shu-hai Zhang & Wen-jing Shi. (2016) Theoretical insights into the stabilities, detonation performance, and electrostatic potentials of cocrystals containing α- or β-HMX and TATB, FOX-7, NTO, or DMF in various molar ratios. Journal of Molecular Modeling 22:10.
Crossref
Rui-zhi Feng, Shu-hai Zhang, Fu-de Ren, Rui-jun Gou & Li Gao. (2016) Theoretical insight into the binding energy and detonation performance of ε-, γ-, β-CL-20 cocrystals with β-HMX, FOX-7, and DMF in different molar ratios, as well as electrostatic potential. Journal of Molecular Modeling 22:6.
Crossref
Peter Politzer & Jane S. Murray. (2016) High Performance, Low Sensitivity: Conflicting or Compatible?. Propellants, Explosives, Pyrotechnics 41:3, pages 414-425.
Crossref
Hong-fei Gao, Shu-hai Zhang, Fu-de Ren, Rui-jun Gou, Gang Han, Jing-bo Wu, Xiong Ding & Wen-hu Zhao. (2016) Theoretical insight into the sensitive mechanism of multilayer-shaped cocrystal explosives: compression and slide. Journal of Molecular Modeling 22:5.
Crossref
Fu-de Ren, Duan-lin Cao, Wen-jing Shi & Hong-fei Gao. (2016) A theoretical prediction of the relationships between the impact sensitivity and electrostatic potential in strained cyclic explosive and application to H-bonded complex of nitrocyclohydrocarbon. Journal of Molecular Modeling 22:4.
Crossref
Bao-guo Wang, Fu-de Ren & Wen-jing Shi. (2015) A theoretical investigation into the strength of N–NO2 bonds, ring strain and electrostatic potential upon formation of intermolecular H-bonds between HF and the nitro group in nitrogen heterocyclic rings C n H2n N–NO2 (n = 2–5), RDX and HMX. Journal of Molecular Modeling 21:11.
Crossref
Jane S. Murray, Zenaida Peralta-Inga Shields, Paul G. Seybold & Peter Politzer. (2015) Intuitive and counterintuitive noncovalent interactions of aromatic π regions with the hydrogen and the nitrogen of HCN. Journal of Computational Science 10, pages 209-216.
Crossref
Yong-xiang Li, Shu-sen Chen & Fu-de Ren. (2015) Theoretical insights into the structures and mechanical properties of HMX/NQ cocrystal explosives and their complexes, and the influence of molecular ratios on their bonding energies. Journal of Molecular Modeling 21:9.
Crossref
Peter Politzer & Jane S. Murray. (2015) Some molecular/crystalline factors that affect the sensitivities of energetic materials: molecular surface electrostatic potentials, lattice free space and maximum heat of detonation per unit volume. Journal of Molecular Modeling 21:2.
Crossref
Jing Yang & Wei-Jie Chi. (2014) New potential high energy density compounds: Oxadiaziridine derivatives. Russian Journal of Physical Chemistry A 88:10, pages 1700-1705.
Crossref
Narges Zohari, Mohammad Hossein Keshavarz & Seyed Abolfazl Seyedsadjadi. (2014) A link between impact sensitivity of energetic compounds and their activation energies of thermal decomposition. Journal of Thermal Analysis and Calorimetry 117:1, pages 423-432.
Crossref
Feng Guo, Hong Zhang, Hai-Quan Hu & Xin-Lu Cheng. (2014) Effects of hydrogen bonds on solid state TATB, RDX, and DATB under high pressures. Chinese Physics B 23:4, pages 046501.
Crossref
Mei Jing, Huarong Li, Jun Wang, Yuanjie Shu, Xiaoyu Zhang, Qing Ma & Yigang Huang. (2014) Theoretical investigation on the structure and performance of N, N′-azobis-polynitrodiazoles. Journal of Molecular Modeling 20:4.
Crossref
Peter Politzer & Jane S. Murray. 2014. Green Energetic Materials. Green Energetic Materials 45 62 .
Peter Politzer & Jane S. Murray. 2014. Energetic Materials. Energetic Materials 1 30 .
Huarong Li, Yuanjie Shu, Shijie Gao, Ling Chen, Qing Ma & Xuehai Ju. (2013) Easy methods to study the smart energetic TNT/CL-20 co-crystal. Journal of Molecular Modeling 19:11, pages 4909-4917.
Crossref
Zijun Yu & Elliot R. Bernstein. (2013) Sensitivity and Performance of Azole-Based Energetic Materials. The Journal of Physical Chemistry A 117:42, pages 10889-10902.
Crossref
P. Ravi, Surya P. Tewari & Ram Ramaswamy. (2012) Computational studies on the structures and energies of the tautomers of 1-amino-3-nitrotriazol-5-one-2-oxide. Structural Chemistry 24:4, pages 1347-1367.
Crossref
Ting Yan, Wei-Jie Chi, Jing Bai, Lu-Lin Li, Bu-Tong Li & Hai-Shun Wu. (2013) Computational studies on polynitropurines as potential high energy density materials. Journal of Molecular Modeling 19:6, pages 2235-2242.
Crossref
Zijun Yu & Elliot R. Bernstein. (2013) On the Decomposition Mechanisms of New Imidazole-Based Energetic Materials. The Journal of Physical Chemistry A 117:8, pages 1756-1764.
Crossref
P. Ravi, Bonige K. Babu & Suyra P. Tewari. (2012) Theoretical investigations on the structure, density, thermodynamic and performance properties of amino-, methyl-, nitroso- and nitrotriazolones. Journal of Molecular Modeling 19:1, pages 33-48.
Crossref
P. Ravi & Surya P. Tewari. (2012) Theoretical investigations on the structure, density, thermodynamic and performance properties of amino-, methyl-, and nitroimidazoles and their N-oxides. Structural Chemistry 23:6, pages 1953-1970.
Crossref
Vikas D. Ghule. (2012) Computational Studies on Energetic Properties of Trinitro-Substituted Imidazole–Triazole and Pyrazole–Triazole Derivatives. The Journal of Physical Chemistry A 116:37, pages 9391-9397.
Crossref
Xiao-Hong Li, Zhu-Mu Fu & Xian-Zhou Zhang. (2011) Computational DFT studies on a series of toluene derivatives as potential high energy density compounds. Structural Chemistry 23:2, pages 515-524.
Crossref
Yan Liu, Lianjun Wang, Guixiang Wang, Hongchen Du & Xuedong Gong. (2011) Theoretical studies on 2-diazo-4,6-dinitrophenol derivatives aimed at finding superior propellants. Journal of Molecular Modeling 18:4, pages 1561-1572.
Crossref
P. Ravi, Girish M. Gore, Arun K. Sikder & Surya P. Tewari. (2011) A DFT study on the structure‐property relationship of aminonitropyrazole‐2‐oxides. International Journal of Quantum Chemistry 112:6, pages 1667-1677.
Crossref
P. Ravi, Girish M. Gore, Surya P. Tewari & Arun K. Sikder. (2011) A DFT study of aminonitroimidazoles. Journal of Molecular Modeling 18:2, pages 597-605.
Crossref
P. Ravi, G.M. Gore, Surya P. Tewari & A. K. Sikder. (2011) Quantum chemical studies on the structure and detonation properties of the fused polynitrodiazoles: New high energy density molecules. International Journal of Quantum Chemistry 111:15, pages 4352-4362.
Crossref
Pasupala Ravi, Girish Mohan Gore, Surya Prakash Tewari & Arun Kanti Sikder. (2010) Quantum chemical studies on the aminopolynitropyrazoles. Journal of Molecular Modeling 17:10, pages 2475-2484.
Crossref
P. Ravi, S. K. Shee, G. M. Gore, Surya P. Tewari & A. K. Sikder. (2011) Quantum chemical investigations on the structure–property relationship of aminopolynitrotriazoles. Structural Chemistry 22:3, pages 661-669.
Crossref
Jing Shang, Jianguo Zhang, Tonglai Zhang, Yuanjie Shu, Shaowen Zhang & Huisheng Huang. (2011) Ab initio Study of Electronic Structure and Properties of Crystalline of 1,5‐Diamino‐1,2,3,4‐tetrazole . Chinese Journal of Chemistry 29:2, pages 217-222.
Crossref
Li Xiaohong, Zhang Ruizhou & Zhang Xianzhou. (2010) Computational study of imidazole derivative as high energetic materials. Journal of Hazardous Materials 183:1-3, pages 622-631.
Crossref
P. Ravi, G.M. Gore, Surya P. Tewari & A.K. Sikder. (2010) Quantum chemical studies on the condensed polynitroazoles. Journal of Molecular Structure: THEOCHEM 958:1-3, pages 52-58.
Crossref
P. Ravi, G.M. Gore, Surya P. Tewari & A.K. Sikder. (2010) Quantum chemical studies on the fused nitroazoles. Journal of Molecular Structure: THEOCHEM 955:1-3, pages 171-177.
Crossref
Miroslav Pospíšil, Pavel Vávra, Monica C. Concha, Jane S. Murray & Peter Politzer. (2009) A possible crystal volume factor in the impact sensitivities of some energetic compounds. Journal of Molecular Modeling 16:5, pages 895-901.
Crossref
Anthony D. Yau, Edward F. C. Byrd & Betsy M. Rice. (2009) An Investigation of KS-DFT Electron Densities used in Atoms-in-Molecules Studies of Energetic Molecules. The Journal of Physical Chemistry A 113:21, pages 6166-6171.
Crossref
Xinfang Su, Xinlu Cheng & Suhong Ge. (2009) Theoretical investigation on structure and properties of 2,4,5-trinitroimidazole and its three derivatives. Journal of Molecular Structure: THEOCHEM 895:1-3, pages 44-51.
Crossref
Hong Zhang, Frankie Cheung, Feng Zhao & Xin‐Lu Cheng. (2009) Band gaps and the possible effect on impact sensitivity for some nitro aromatic explosive materials. International Journal of Quantum Chemistry 109:7, pages 1547-1552.
Crossref
Mohammad Hossein Keshavarz. (2007) Prediction of impact sensitivity of nitroaliphatic, nitroaliphatic containing other functional groups and nitrate explosives. Journal of Hazardous Materials 148:3, pages 648-652.
Crossref
Mohammad Hossein Keshavarz, Hadi Motamedoshariati, Hamid Reza Pouretedal, Masoud Kavosh Tehrani & Abolfazl Semnani. (2007) Prediction of shock sensitivity of explosives based on small-scale gap test. Journal of Hazardous Materials 145:1-2, pages 109-112.
Crossref
Betsy M. Rice, Edward F. C. Byrd & William D. Mattson. 2007. High Energy Density Materials. High Energy Density Materials 153 194 .
. (2005) Optimization of Neural Networks Architecture for Impact Sensitivity of Energetic Molecules. Bulletin of the Korean Chemical Society 26:3, pages 399-408.
Crossref
Peter Politzer & Jane S. Murray. 2003. Energetic Materials - Part 2. Detonation, Combustion. Energetic Materials - Part 2. Detonation, Combustion 5 23 .
Betsy M. Rice & Jennifer J. Hare. (2002) A Quantum Mechanical Investigation of the Relation between Impact Sensitivity and the Charge Distribution in Energetic Molecules. The Journal of Physical Chemistry A 106:9, pages 1770-1783.
Crossref
Peter Politzer & Jane S. Murray. 1999. Pauling's Legacy - Modem Modelling of the Chemical Bond. Pauling's Legacy - Modem Modelling of the Chemical Bond 347 363 .
Peter Politzer, Monica C. Concha, M.Edward Grice, Jane S. Murray & Pat Lane. (1998) Computational investigation of the structures and relative stabilities of amino/nitro derivatives of ethylene. Journal of Molecular Structure: THEOCHEM 452:1-3, pages 75-83.
Crossref
Peter Politzer, Jane S. Murray & Monica C. Concha. (1998) C−H and C−NO 2 Dissociation Energies in Some Azines and Nitroazines . The Journal of Physical Chemistry A 102:33, pages 6697-6701.
Crossref
Peter Politzer & Pat Lane. 1997. Advances in Molecular Structure Research Volume 3. Advances in Molecular Structure Research Volume 3 269 285 .
Peter Politzer & Pat Lane. (1996) Comparison of density functional calculations of CNO2, NNO2 and CNF2 dissociation energies. Journal of Molecular Structure: THEOCHEM 388, pages 51-55.
Crossref
Peter Politzer & Jane S. Murray. (1996) Relationships between dissociation energies and electrostatic potentials of CNO2 bonds: applications to impact sensitivities. Journal of Molecular Structure 376:1-3, pages 419-424.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.