Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 97, 1999 - Issue 3
26
Views
30
CrossRef citations to date
0
Altmetric
Original Articles

Relativistic theory of nuclear shielding in one-electron atoms 2. Analytical and numerical results

&
Pages 391-413 | Received 25 Aug 1998, Accepted 15 Mar 1999, Published online: 01 Sep 2009

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (2)

Articles from other publishers (28)

Vladimir A. Yerokhin, Krzysztof Pachucki, Zoltán Harman & Christoph H. Keitel. (2024) Nuclear magnetic shielding in heliumlike ions. Physical Review A 109:3.
Crossref
Krzysztof Pachucki, Vojtěch Patkóš & Vladimir A. Yerokhin. (2023) Accurate determination of 6,7Li nuclear magnetic moments. Physics Letters B 846, pages 138189.
Crossref
Irina L. Rusakova & Yuriy Yu. Rusakov. (2023) Relativistic Effects from Heavy Main Group p-Elements on the NMR Chemical Shifts of Light Atoms: From Pioneering Studies to Recent Advances. Magnetochemistry 9:1, pages 24.
Crossref
Irina L. Rusakova, Yuriy Yu. Rusakov & Leonid B. Krivdin. (2022) Computational 199 Hg NMR . Magnetic Resonance in Chemistry 60:10, pages 929-953.
Crossref
Irina L. Rusakova. (2022) Quantum Chemical Approaches to the Calculation of NMR Parameters: From Fundamentals to Recent Advances. Magnetochemistry 8:5, pages 50.
Crossref
Irina L. Rusakova & Yuriy Yu. Rusakov. (2020) Quantum chemical calculations of 77 Se and 125 Te nuclear magnetic resonance spectral parameters and their structural applications . Magnetic Resonance in Chemistry 59:4, pages 359-407.
Crossref
Savely G. Karshenboim & Evgeny Yu. Korzinin. (2021) Theoretical prediction for the muonium hyperfine-structure interval and its accuracy. Physical Review A 103:2.
Crossref
Patrycja Stefańska. (2020) Dia- and paramagnetic contributions to magnetizabilities of relativistic hydrogenlike atoms in some low-lying discrete energy eigenstates. Atomic Data and Nuclear Data Tables 135-136, pages 101360.
Crossref
Savely G. Karshenboim & Vladimir G. Ivanov. (2019) Two-body corrections to the g factors of the bound muon and nucleus in light muonic atoms. The European Physical Journal D 73:10.
Crossref
Savely G. Karshenboim & Vladimir G. Ivanov. (2018) The g factor of the bound muon in medium-Z muonic atoms. Physics Letters B 786, pages 485-490.
Crossref
Radosław Szmytkowski & Grzegorz Łukasik. (2018) Static magnetic multipole susceptibilities of the relativistic hydrogenlike atom in the ground state: Application of the Sturmian expansion of the generalized Dirac-Coulomb Green function. Physical Review A 98:2.
Crossref
Patrycja Stefańska. (2018) Nuclear magnetic shielding constants of Dirac one-electron atoms in some low-lying discrete energy eigenstates. Atomic Data and Nuclear Data Tables 120, pages 352-372.
Crossref
A.M. Volchkova, A.S. Varentsova, N.A. Zubova, V.A. Agababaev, D.A. Glazov, A.V. Volotka, V.M. Shabaev & G. Plunien. (2017) Nuclear magnetic shielding in boronlike ions. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 408, pages 89-92.
Crossref
Patrycja Stefa?ska. (2016) Closed-form expression for the magnetic shielding constant of the relativistic hydrogenlike atom in an arbitrary discrete energy eigenstate: Application of the Sturmian expansion of the generalized Dirac?Coulomb Green function. Physical Review A 94:1.
Crossref
Giovanni F. Caramori, Rafael M. Piccoli, Maximiliano Segala, Alvaro Muñoz-Castro, Raul Guajardo-Maturana, Diego M. Andrada & Gernot Frenking. (2015) Cyclic trinuclear copper( i ), silver( i ), and gold( i ) complexes: a theoretical insight . Dalton Transactions 44:1, pages 377-385.
Crossref
Lan Cheng, Jürgen Gauss & John F. Stanton. (2013) Treatment of scalar-relativistic effects on nuclear magnetic shieldings using a spin-free exact-two-component approach. The Journal of Chemical Physics 139:5.
Crossref
Patrycja Stefańska & Radosław Szmytkowski. (2011) Electric and magnetic dipole shielding constants for the ground state of the relativistic hydrogen‐like atom: Application of the Sturmian expansion of the generalized Dirac‐Coulomb Green function. International Journal of Quantum Chemistry 112:5, pages 1363-1372.
Crossref
V. A. Yerokhin, K. Pachucki, Z. Harman & C. H. Keitel. (2012) QED calculation of the nuclear magnetic shielding for hydrogenlike ions. Physical Review A 85:2.
Crossref
Yunlong Xiao, Qiming Sun & Wenjian Liu. (2012) Fully relativistic theories and methods for NMR parameters. Theoretical Chemistry Accounts 131:1.
Crossref
Yunlong Xiao, Qiming Sun & Wenjian Liu. 2012. Perspectives on Theoretical Chemistry. Perspectives on Theoretical Chemistry 187 203 .
Lan Cheng, Yunlong Xiao & Wenjian Liu. (2009) Four-component relativistic theory for nuclear magnetic shielding: Magnetically balanced gauge-including atomic orbitals. The Journal of Chemical Physics 131:24.
Crossref
Savely G. Karshenboim. (2005) Precision physics of simple atoms: QED tests, nuclear structure and fundamental constants. Physics Reports 422:1-2, pages 1-63.
Crossref
Peter J. Mohr & Barry N. Taylor. (2005) CODATA recommended values of the fundamental physical constants: 2002. Reviews of Modern Physics 77:1, pages 1-107.
Crossref
D. L. Moskovkin, N. S. Oreshkina, V. M. Shabaev, T. Beier, G. Plunien, W. Quint & G. Soff. (2004) factor of hydrogenlike ions with nonzero nuclear spin . Physical Review A 70:3.
Crossref
Pekka Manninen, Perttu Lantto, Juha Vaara & Kenneth Ruud. (2003) Perturbational ab initio calculations of relativistic contributions to nuclear magnetic resonance shielding tensors . The Journal of Chemical Physics 119:5, pages 2623-2637.
Crossref
Savely G. Karshenboim & Vladimir G. Ivanov. (2003) The g factor of the proton. Physics Letters B 566:1-2, pages 27-34.
Crossref
S G Karshenboim & V G Ivanov. (2002) The g factor in a light two-body atomic system: a determination of fundamental constants to test QED . Canadian Journal of Physics 80:11, pages 1305-1312.
Crossref
Radosław Szmytkowski. (2002) Larmor diamagnetism and Van Vleck paramagnetism in relativistic quantum theory: The Gordon decomposition approach. Physical Review A 65:3.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.