Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 28, 1998 - Issue 9
210
Views
49
CrossRef citations to date
0
Altmetric
Original Articles

Simple, Efficient and Convenient Synthesis of Pyrroles and Pyrazoles Using Zeolites.

&
Pages 1661-1665 | Received 03 Nov 1997, Published online: 22 Aug 2006

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (4)

Dilek Akbaşlar, Onur Demirkol & Sultan Giray. (2014) Paal–Knorr Pyrrole Synthesis in Water. Synthetic Communications 44:9, pages 1323-1332.
Read now
Saba Hemmati, Mohammad Majid Mojtahedi, Mohammad Saeed Abaee, Zahra Vafajoo, Shokufe Ghahri Saremi, Mohammad Noroozi, Alireza Sedrpoushan & Meral Ataee. (2013) One-pot tandem reactions for direct conversion of thiols and disulfides to sulfonic esters, and Paal–Knorr synthesis of pyrrole derivatives catalyzed by TCCA. Journal of Sulfur Chemistry 34:4, pages 347-357.
Read now
Guoyong Song, Bo Wang, Guang Wang, Yuru Kang, Tao Yang & Liming Yang. (2005) Fe3+‐Montmorillonite as Effective, Recyclable Catalyst for Paal–Knorr Pyrrole Synthesis Under Mild Conditions. Synthetic Communications 35:8, pages 1051-1057.
Read now

Articles from other publishers (45)

Adithya Vinod, H. M. Chandra Mouli, Poulomi Pal, Efficiency Myrsing, Vamkudoth Yaswanth Naik, Harisadhan Ghosh & Anupam Jana. (2024) Sustainable Synthesis of Indole-Substituted Densely Functionalized Pyrrole. The Journal of Organic Chemistry 89:3, pages 1407-1416.
Crossref
Pavel S. Bobrov, Sergei D. Kirik, Ivan V. Peterson & Georgii A. Suboch. (2023) Regioselective synthesis of novel nitroso-pyrazolylquinoxalines via HOAc-mediated cyclocondensation of 2-hydroxyimino-1,3-diketones with hydrazinylquinoxalines . Organic & Biomolecular Chemistry 21:17, pages 3604-3614.
Crossref
Abdolhamid Bamoniri & Nahid Yaghmaeiyan. (2022) Kaolin sulfonic acid nanoparticles: An efficient and reusable heterogeneous catalyst for the synthesis of highly substituted pyrazoles via a green protocol. Results in Chemistry 4, pages 100505.
Crossref
Majid M. Heravi & Vahideh Zadsirjan. 2022. 1 60 .
Hedieh Rostami & Lotfi Shiri. (2021) Review on synthesis of pyrrole derivatives promoted by nanoparticles. Applied Organometallic Chemistry 35:6.
Crossref
Haribandhu Chaudhuri, Bhaskar Sarmah & Niranjan Karak. 2020. Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications 1 31 .
J. D. Bhirud, G. R. Gupta & H. P. Narkhede. (2020) Oxidative Cyclization of Chalcones in the Presence of Sulfamic Acid as Catalyst. Synthesis, Biological Activity, and Thermal Properties of 1,3,5-Trisubstituted Pyrazoles. Russian Journal of Organic Chemistry 56:10, pages 1815-1822.
Crossref
Aboli Sapkal & Santosh Kamble. (2020) Sodium toluene‐4‐sulfonate as a reusable and ecofriendly catalyst for greener synthesis of 5‐aminopyrazole‐4‐carbonitrile in aqueous medium. Journal of Heterocyclic Chemistry 57:10, pages 3597-3604.
Crossref
Hedieh Rostami & Lotfi Shiri. (2020) Fe3O4@SiO2-PTMS-Guanidine-SA nanoparticles as an effective and reusable catalyst for the synthesis of N-substituted pyrroles. Journal of the Iranian Chemical Society 17:6, pages 1329-1335.
Crossref
Yunzhu Wang, Shinya Furukawa, Xinpu Fu & Ning Yan. (2019) Organonitrogen Chemicals from Oxygen-Containing Feedstock over Heterogeneous Catalysts. ACS Catalysis 10:1, pages 311-335.
Crossref
Rani N. Patil & A. Vijay Kumar. (2018) Biomimetic Clauson‐Kass and Paal‐Knorr Pyrrole Synthesis Using β ‐Cyclodextrin‐SO 3 H under Aqueous and Neat Conditions ‐ Application to Formal Synthesis of Polygonatine † . ChemistrySelect 3:34, pages 9812-9818.
Crossref
Hashem Sharghi, Jasem Aboonajmi, Mozhdeh Mozaffari, Mohammad Mahdi Doroodmand & Mahdi Aberi. (2017) Application and developing of iron‐doped multi‐walled carbon nanotubes (Fe/MWCNTs) as an efficient and reusable heterogeneous nanocatalyst in the synthesis of heterocyclic compounds. Applied Organometallic Chemistry 32:3.
Crossref
Bhaskar Sarmah & Rajendra Srivastava. (2017) Octahedral MnO 2 Molecular Sieve-Decorated Meso -ZSM-5 Catalyst for Eco-Friendly Synthesis of Pyrazoles and Carbamates . Industrial & Engineering Chemistry Research 56:51, pages 15017-15029.
Crossref
F. Moradgholi, J. Lari & Y. Baratian. (2017) Silica tungstic acid and sulphated silica tungstic acid as highly efficient solid acid catalysts for the synthesis of pyrrole derivatives. Russian Journal of General Chemistry 86:12, pages 2924-2927.
Crossref
Liudvikas Akelis, Jolanta Rousseau, Robertas Juskenas, Jelena Dodonova, Cyril Rousseau, Stéphane Menuel, Dominique Prevost, Sigitas Tumkevičius, Eric Monflier & Frédéric Hapiot. (2015) Greener Paal–Knorr Pyrrole Synthesis by Mechanical Activation. European Journal of Organic Chemistry 2016:1, pages 31-35.
Crossref
Hamideh Emtiazi, Mohammad Ali Amrollahi & Bi Bi Fatemeh Mirjalili. (2015) Nano-silica sulfuric acid as an efficient catalyst for the synthesis of substituted pyrazoles. Arabian Journal of Chemistry 8:6, pages 793-797.
Crossref
Shinichiro Fuse, Hirotaka Sugiyama, Daisuke Kobayashi, Yusuke Iijima, Keisuke Matsumura, Hiroshi Tanaka & Takashi Takahashi. (2015) Regioselective, One‐Pot, Three‐Component Synthesis of 1,3,4‐ and 1,3,5‐Triarylpyrazoles from 1‐ and 2‐Aryl‐1‐alkenyl Sulfones. European Journal of Organic Chemistry 2015:21, pages 4756-4764.
Crossref
S. Setareh Rahmatzadeh, Bahador Karami & Saeed Khodabakhshi. (2014) A Modified and Practical Synthetic Route to Indazoles and Pyrazoles Using Tungstate Sulfuric Acid. Journal of the Chinese Chemical Society 62:1, pages 17-20.
Crossref
Ph Ameta & Andrea PenoniDaniela Lanari & Ornelio Rosati. 2014. Heterogeneous Catalysis. Heterogeneous Catalysis 1 48 .
Stéphane Menuel, Jolanta Rousseau, Cyril Rousseau, Edita Vaičiūnaite, Jelena Dodonova, Sigitas Tumkevičius & Eric Monflier. (2014) Access to Pyrrole Derivatives in Water with the Assistance of Methylated Cyclodextrins. European Journal of Organic Chemistry 2014:20, pages 4356-4361.
Crossref
Mariappan Jeganathan & Kasi Pitchumani. (2014) Solvent-Free Syntheses of 1,5-Benzodiazepines Using HY Zeolite as a Green Solid Acid Catalyst. ACS Sustainable Chemistry & Engineering 2:5, pages 1169-1176.
Crossref
Soheila Khaghaninejad & Majid M. Heravi. 2014. 95 146 .
Amit Walia, Soosung Kang & Richard B Silverman. (2013) Microwave-Assisted Protection of Primary Amines as 2,5-Dimethylpyrroles and Their Orthogonal Deprotection. The Journal of Organic Chemistry 78:21, pages 10931-10937.
Crossref
Bahador Karami, Saeed Khodabakhshi & Masih Jamshidi. (2013) Green and Rapid Strategy for Synthesis of Novel and Known Pyrroles by the Use of Molybdate Sulfuric Acid. Journal of the Chinese Chemical Society 60:9, pages 1103-1106.
Crossref
Madhuri Barge, Santosh Kamble, Arjun Kumbhar, Gajanan Rashinkar & Rajashri Salunkhe. (2013) Hydrotrope: green and rapid approach for the catalyst-free synthesis of pyrazole derivatives. Monatshefte für Chemie - Chemical Monthly 144:8, pages 1213-1218.
Crossref
Liangguang Wang, Xiaoqiang Yu, Xiujuan Feng & Ming Bao. (2013) Synthesis of 3,5-Disubstituted Pyrazoles via Cope-Type Hydroamination of 1,3-Dialkynes. The Journal of Organic Chemistry 78:4, pages 1693-1698.
Crossref
Zeba N. Siddiqui & Farheen Farooq. (2012) Silica supported sodium hydrogen sulfate (NaHSO4–SiO2): A novel, green catalyst for synthesis of pyrazole and pyranyl pyridine derivatives under solvent-free condition via heterocyclic β-enaminones. Journal of Molecular Catalysis A: Chemical 363-364, pages 451-459.
Crossref
Nam T.S. Phan, Tung T. Nguyen, Quang H. Luu & Lien T.L. Nguyen. (2012) Paal–Knorr reaction catalyzed by metal–organic framework IRMOF-3 as an efficient and reusable heterogeneous catalyst. Journal of Molecular Catalysis A: Chemical 363-364, pages 178-185.
Crossref
Ali Rahmatpour. (2012) Polystyrene-supported GaCl3 as a highly efficient and recyclable heterogeneous Lewis acid catalyst for one-pot synthesis of N-substituted pyrroles. Journal of Organometallic Chemistry 712, pages 15-19.
Crossref
Ali Rahmatpour. (2011) Xanthan sulfuric acid as an efficient, green, biodegradable, and recyclable solid acid catalyst for one-pot synthesis of N-substituted pyrroles under solvent-free conditions at room temperature. Monatshefte für Chemie - Chemical Monthly 143:3, pages 491-495.
Crossref
Abbas Teimouri & Alireza Najafi Chermahini. (2012) One‐pot Green Synthesis of Pyrrole Derivatives Catalyzed by Nano Sulfated Zirconia as a Solid Acid Catalyst. Chinese Journal of Chemistry 30:2, pages 372-376.
Crossref
V.S.V. Satyanarayana & A. Sivakumar. (2011) Ultrasound-assisted synthesis of 2,5-dimethyl-N-substituted pyrroles catalyzed by uranyl nitrate hexahydrate. Ultrasonics Sonochemistry 18:5, pages 917-922.
Crossref
Ali Rahmatpour. (2011) ZrOCl 2 ·8H 2 O as a highly efficient, eco‐friendly and recyclable Lewis acid catalyst for one‐pot synthesis of N ‐substituted pyrroles under solvent‐free conditions at room temperature . Applied Organometallic Chemistry 25:8, pages 585-590.
Crossref
Filip Colpaert, Sven Mangelinckx, Nicola Giubellina & Norbert De Kimpe. (2011) Transformations of 3-aryl-2-chloro-2-imidoylaziridines: novel entries to 4-chloro-2,5-diaryl-1H-imidazoles and 2-chloro-2-acylaziridines. Tetrahedron 67:6, pages 1258-1265.
Crossref
Nuno R. Candeias, Luís C. Branco, Pedro M. P. Gois, Carlos A. M. Afonso & Alexandre F. Trindade. (2009) More Sustainable Approaches for the Synthesis of N-Based Heterocycles. Chemical Reviews 109:6, pages 2703-2802.
Crossref
M. Gopalakrishnan, J. Thanusu & V. Kanagarajan. (2009) A new series of fused indazole derivatives: solid state synthesis; antibacterial and antifungal activities. Pharmaceutical Chemistry Journal 43:1, pages 30-35.
Crossref
Jonathon E. Beves, Edwin C. Constable, Catherine E. Housecroft, Markus Neuburger & Silvia Schaffner. (2008) A pyrazolyl-terminated 2,2′:6′,2″-terpyridine ligand: Iron(II), ruthenium(II) and palladium(II) complexes of 4′-(3,5-dimethylpyrazol-1-yl)-2,2′:6′,2″-terpyridine. Polyhedron 27:11, pages 2395-2401.
Crossref
Zhan-Hui Zhang, Jian-Jiong Li & Tong-Shan Li. (2008) Ultrasound-assisted synthesis of pyrroles catalyzed by zirconium chloride under solvent-free conditions. Ultrasonics Sonochemistry 15:5, pages 673-676.
Crossref
Haitang Luo, Yuru Kang, Qi Li & Liming Yang. (2008) Sulfamic acid as efficient and reusable catalytic system for the synthesis of pyrrole, furan, and thiophene derivatives. Heteroatom Chemistry 19:2, pages 144-148.
Crossref
Sujata Roy, Sudipta Roy & Gordon W. Gribble. (2008) Efficient reductive acylation of 3-nitroindoles. Tetrahedron Letters 49:9, pages 1531-1533.
Crossref
Ornelio Rosati, Massimo Curini, Maria Carla Marcotullio, Antonio Macchiarulo, Marina Perfumi, Laura Mattioli, Francesco Rismondo & Giancarlo Cravotto. (2007) Synthesis, docking studies and anti-inflammatory activity of 4,5,6,7-tetrahydro-2H-indazole derivatives. Bioorganic & Medicinal Chemistry 15:10, pages 3463-3473.
Crossref
Bo Wang, Yanlong Gu, Cheng Luo, Tao Yang, Liming Yang & Jishuan Suo. (2004) Pyrrole synthesis in ionic liquids by Paal–Knorr condensation under mild conditions. Tetrahedron Letters 45:17, pages 3417-3419.
Crossref
Massimo Curini, Francesca Montanari, Ornelio Rosati, Eduardo Lioy & Roberto Margarita. (2003) Layered zirconium phosphate and phosphonate as heterogeneous catalyst in the preparation of pyrroles. Tetrahedron Letters 44:20, pages 3923-3925.
Crossref
Kenneth Turnbull. 1999. A Critical Review of the 1998 Literature preceded by two Chapters on Current Heterocyclic Topics. A Critical Review of the 1998 Literature preceded by two Chapters on Current Heterocyclic Topics 163 183 .
R. SREEKUMAR & R. PADMAKUMAR. (2010) ChemInform Abstract: Simple, Efficient and Convenient Synthesis of Pyrroles and Pyrazoles Using Zeolites.. ChemInform 29:35.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.