188
Views
73
CrossRef citations to date
0
Altmetric
Original Articles

Grain boundary sliding in polycrystalline materials

, , , &
Pages 825-842 | Received 01 Nov 1978, Accepted 11 Jun 1979, Published online: 13 Sep 2006

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (1)

DavidM. Cole & GlennD. Durell. (1995) The cyclic loading of saline ice. Philosophical Magazine A 72:1, pages 209-229.
Read now

Articles from other publishers (72)

Guangshuai Sun, Shaocheng Di, Y. T. Feng & Yanzhuo Xue. (2023) Modelling the fracture behaviour of polycrystalline columnar ice using the grain-based discrete element method. Computational Particle Mechanics 10:6, pages 1877-1894.
Crossref
Mojtaba Mokhtari, Ekaterina Kim & Jørgen Amdahl. (2023) A non-linear viscoelastic material model with progressive damage based on microstructural evolution and phase transition in polycrystalline ice for design against ice impact. International Journal of Impact Engineering 176, pages 104563.
Crossref
Yuan Li. (2022) Critical values of the microstructural parameters at the first critical density of the densification of polar firn. Cold Regions Science and Technology 198, pages 103553.
Crossref
Nirmal K. Sinha & Shoma Sinha. 2022. Engineering Physics of High‐Temperature Materials. Engineering Physics of High‐Temperature Materials 303 342 .
Nirmal K. Sinha & Shoma Sinha. 2022. Engineering Physics of High‐Temperature Materials. Engineering Physics of High‐Temperature Materials 265 301 .
Nirmal K. Sinha & Shoma Sinha. 2022. Engineering Physics of High‐Temperature Materials. Engineering Physics of High‐Temperature Materials 237 264 .
Nirmal K. Sinha & Shoma Sinha. 2022. Engineering Physics of High‐Temperature Materials. Engineering Physics of High‐Temperature Materials 129 213 .
Nirmal K. Sinha & Shoma Sinha. 2022. Engineering Physics of High‐Temperature Materials. Engineering Physics of High‐Temperature Materials 365 400 .
Nirmal K. Sinha & Shoma Sinha. 2022. Engineering Physics of High‐Temperature Materials. Engineering Physics of High‐Temperature Materials 343 363 .
Nirmal K. Sinha & Shoma Sinha. 2022. Engineering Physics of High‐Temperature Materials. Engineering Physics of High‐Temperature Materials 1 28 .
Weijiang Liu, Xin Chen, Tahir Ahmad, Chenyang Zhou, Xiangpeng Xiao, Hang Wang & Bin Yang. (2022) Microstructures and mechanical properties of Cu–Ti alloys with ultrahigh strength and high ductility by thermo-mechanical treatment. Materials Science and Engineering: A 835, pages 142672.
Crossref
Iman E. Gharamti, John P. Dempsey, Arttu Polojärvi & Jukka Tuhkuri. (2021) Creep and fracture of warm columnar freshwater ice. The Cryosphere 15:5, pages 2401-2413.
Crossref
Richard McKenna, Ada Loewen & Greg Crocker. (2021) A finite element model for the deformation of floating ice covers. Cold Regions Science and Technology 182, pages 103213.
Crossref
Ryszard StaroszczykRyszard Staroszczyk. 2019. Ice Mechanics for Geophysical and Civil Engineering Applications. Ice Mechanics for Geophysical and Civil Engineering Applications 21 57 .
Igor Gribanov, Rocky Taylor & Robert Sarracino. (2018) Cohesive zone micromechanical model for compressive and tensile failure of polycrystalline ice. Engineering Fracture Mechanics 196, pages 142-156.
Crossref
Ekaterina KharikBrian MorseVarvara RoubtsovaMario FafardAlain CôtéGeorge Comfort. (2018) Numerical studies for a better understanding of static ice loads on dams. Canadian Journal of Civil Engineering 45:1, pages 18-29.
Crossref
Yo-Lun Yang, Zhusheng Shi, Yong Li, Qi Rong & Rajab Said. (2017) Experimental studies and constitutive modelling of anelastic creep recovery during creep age forming. Procedia Engineering 207, pages 275-280.
Crossref
Wenshan Yu & Shengping Shen. (2016) Energetics of point defect interacting with grain boundaries undergone plastic deformations. International Journal of Plasticity 85, pages 93-109.
Crossref
Mohammed Shokr & Nirmal Sinha. 2015. Sea Ice. Sea Ice 507 534 .
Nirmal K. Sinha & Shoma Sinha. (2011) High-temperature yield strength and its dependence on primary creep and recovery. Materials Science and Engineering: A 528:16-17, pages 5366-5378.
Crossref
G.W. Timco & W.F. Weeks. (2010) A review of the engineering properties of sea ice. Cold Regions Science and Technology 60:2, pages 107-129.
Crossref
T. Theile, D. Szabo, A. Luthi, H. Rhyner & M. Schneebeli. (2009) Mechanics of the Ski–Snow Contact. Tribology Letters 36:3, pages 223-231.
Crossref
Nirmal K. Sinha. (2009) Stress exponent and primary creep parameters using single specimen and strain relaxation and recovery test. Materials Science and Engineering: A 510-511, pages 450-456.
Crossref
P.O. Moslet. (2008) Medium scale ice–structure interaction. Cold Regions Science and Technology 54:2, pages 143-152.
Crossref
P.O. Moslet. (2007) Field testing of uniaxial compression strength of columnar sea ice. Cold Regions Science and Technology 48:1, pages 1-14.
Crossref
Nirmal K. Sinha. (2006) Constant-load tertiary creep in nickel-base single crystal superalloys. Materials Science and Engineering: A 432:1-2, pages 129-141.
Crossref
Nirmal K. Sinha. (2005) Dynamic steady-state tertiary creep in a Nickel-base single crystal superalloy at high temperatures. Journal of Materials Science 41:6, pages 1855-1858.
Crossref
Nirmal K. Sinha & Shoma Sinha. (2005) Stress relaxation at high temperatures and the role of delayed elasticity. Materials Science and Engineering: A 393:1-2, pages 179-190.
Crossref
Perry Bartelt, Othmar Buser & Sergey A. Sokratov. (2004) A nonequilibrium treatment of heat and mass transfer in alpine snowcovers. Cold Regions Science and Technology 39:2-3, pages 219-242.
Crossref
Nirmal K. Sinha. (2003) Limitations of stress relaxation tests for determining stress dependence of strain rate at high temperatures. Scripta Materialia 48:6, pages 731-736.
Crossref
Paul D. Barrette & Ian J. Jordaan. (2003) Pressure–temperature effects on the compressive behavior of laboratory-grown and iceberg ice. Cold Regions Science and Technology 36:1-3, pages 25-36.
Crossref
Carlo Scapozza & Perry Bartelt. (2017) Triaxial tests on snow at low strain rate. Part II. Constitutive behaviour. Journal of Glaciology 49:164, pages 91-101.
Crossref
Devinder S Sodhi. (2001) Crushing failure during ice–structure interaction. Engineering Fracture Mechanics 68:17-18, pages 1889-1921.
Crossref
H.J Frost. (2001) Mechanisms of crack nucleation in ice. Engineering Fracture Mechanics 68:17-18, pages 1823-1837.
Crossref
I. L. Meglis, P. M. Melanson & I.J. Jordaan. (2017) Microstructural change in ice: II. Creep behavior under triaxial stress conditions. Journal of Glaciology 45:151, pages 438-448.
Crossref
Devinder S. Sodhi, Takahiro Takeuchi, Naoki Nakazawa, Satoshi Akagawa & Hiroshi Saeki. (1998) Medium-scale indentation tests on sea ice at various speeds. Cold Regions Science and Technology 28:3, pages 161-182.
Crossref
V. Gupta & R. C. Picu. (1998) Nucleation of feather cracks in columnar freshwater ice: Experimental observations. Journal of Geophysical Research: Oceans 103:C10, pages 21767-21774.
Crossref
Olivier Plé & Jacques Meyssonnier. (1997) Preparation and Preliminary Study of Structure-Controlled S2 Columnar Ice. The Journal of Physical Chemistry B 101:32, pages 6118-6122.
Crossref
E. M. Schulson, S. Qi, J. S. Melton & E.T. Gratz. (2017) Across-column cracks and axial splits in S2 saline ice under compression. Journal of Glaciology 43:145, pages 411-414.
Crossref
Lorne W. Gold. (2017) Statistical characteristics for the type and length of deformation-induced cracks in columnar-grain ice. Journal of Glaciology 43:144, pages 311-320.
Crossref
Hua‐Tay Lin, Kathleen B. Alexander & Paul F. Becher. (2005) Grain Size Effect on Creep Deformation of Alumina‐Silicon Carbide Composites. Journal of the American Ceramic Society 79:6, pages 1530-1536.
Crossref
Nirmal K. Sinha & Baolin Cai. (1996) Elasto-Delayed-Elastic simulation of short-term deflection of fresh-water ice covers. Cold Regions Science and Technology 24:2, pages 221-235.
Crossref
L.W. Morland. (1996) Dynamic impact between a viscoelastic ice floe and a rigid structure. Cold Regions Science and Technology 24:1, pages 7-28.
Crossref
Brian S. Waddington & Garry K. C. Clarke. (2017) Hydraulic properties of subglacial sediment determined from the mechanical response of water-filled boreholes. Journal of Glaciology 41:137, pages 112-124.
Crossref
Hua-Tay Lin & Paul F. Becher. 1995. Plastic Deformation of Ceramics. Plastic Deformation of Ceramics 543 553 .
C. Zhan, E. Evgin & N.K. Sinha. (1994) A three dimensional anisotropic constitutive model for ductile behaviour of columnar grained ice. Cold Regions Science and Technology 22:3, pages 269-284.
Crossref
J. Meyssonnier & A. Goubert. (2017) Transient creep of polycrystalline ice under uniaxial compression: an assessment of internal state variable models. Annals of Glaciology 19, pages 55-62.
Crossref
Lorne W. Gold. (2017) The elastic modulus of columnar-grain fresh-water ice. Annals of Glaciology 19, pages 13-18.
Crossref
S. Shyam Sunder, Alex Elvin & S. Nanthikesan. (1993) Numerical Modeling of Transient Creep in Polycrystalline Ice. Journal of Engineering Mechanics 119:10, pages 2011-2035.
Crossref
L. A. Lliboutry. 1991. Glacial Isostasy, Sea-Level and Mantle Rheology. Glacial Isostasy, Sea-Level and Mantle Rheology 321 341 .
Nirmal K. Sinha. 1991. Ice-Structure Interaction. Ice-Structure Interaction 69 87 .
P. Duval, P. Kalifa & J. Meyssonnier. 1991. Ice-Structure Interaction. Ice-Structure Interaction 55 67 .
S. Shyam Sunder & Mao S. Wu. (1990) On the constitutive modeling of transient creep in polycrystalline ice. Cold Regions Science and Technology 18:3, pages 267-294.
Crossref
S. Shyam Sunder & Mao S. Wu. (1990) Crack nucleation due to elastic anisotropy in polycrystalline ice. Cold Regions Science and Technology 18:1, pages 29-47.
Crossref
N.K. Sinha. (1989) Microcrack-enhanced creep in polycrystalline material at elevated temperature. Acta Metallurgica 37:11, pages 3107-3118.
Crossref
Dale G. Karr & Kyungsik Choi. (1989) A three-dimensional constitutive damage model for polycrystalline ice. Mechanics of Materials 8:1, pages 55-66.
Crossref
S.Shyam Sunder & Mao S. Wu. (1989) A multiaxial differential model of flow in orthotropic polycrystalline ice. Cold Regions Science and Technology 16:3, pages 223-235.
Crossref
Nirmal K. Sinha. (1989) Use of foil strain gauges in ice over a wide loading rate. Cold Regions Science and Technology 16:2, pages 145-158.
Crossref
S.Shyam Sunder & Mao S. Wu. (1989) A differential flow model for polycrystalline ice. Cold Regions Science and Technology 16:1, pages 45-62.
Crossref
Nirmal K. Sinha. 1989. Mechanics of Creep Brittle Materials 1. Mechanics of Creep Brittle Materials 1 201 212 .
M. R. Mills & S. D. Hallam. 1989. Mechanics of Creep Brittle Materials 1. Mechanics of Creep Brittle Materials 1 152 167 .
Nirmal K. Sinha. (1988) Crack-enhanced creep in polycrystalline material: strain-rate sensitive strength and deformation of ice. Journal of Materials Science 23:12, pages 4415-4428.
Crossref
Louis A. LliboutryLouis A. Lliboutry. 1987. Very Slow Flows of Solids. Very Slow Flows of Solids 445 464 .
T.J.O. Sanderson & A.J. Child. (1986) Ice loads on offshore structures: The transition from creep to fracture. Cold Regions Science and Technology 12:2, pages 157-161.
Crossref
R.H. Ericksen. (1985) Creep of aromatic polyamide fibres. Polymer 26:5, pages 733-746.
Crossref
Nirmal K. Sinha. (1984) Role of transient creep in high temperature tensile failure of ice. Scripta Metallurgica 18:8, pages 777-782.
Crossref
Nirmal K. Sinha. (1984) Intercrystalline cracking, grain-boundary sliding, and delayed elasticity at high temperatures. Journal of Materials Science 19:2, pages 359-376.
Crossref
N.K. Sinha. 1984. Fracture 84. Fracture 84 2295 2302 .
N.K. Sinha. (1983) Creep model of ice for monotonically increasing stress. Cold Regions Science and Technology 8:1, pages 25-33.
Crossref
Robert W. Baker. (1982) A flow equation for anisotropic ice. Cold Regions Science and Technology 6:2, pages 141-148.
Crossref
N. K. Sinha. (1982) Constant strain- and stress-rate compressive strength of columnar-grained ice. Journal of Materials Science 17:3, pages 785-802.
Crossref
Roger LeB. Hooke. (2010) Flow law for polycrystalline ice in glaciers: Comparison of theoretical predictions, laboratory data, and field measurements. Reviews of Geophysics 19:4, pages 664-672.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.