153
Views
62
CrossRef citations to date
0
Altmetric
Original Articles

Irreversibility of cyclic slip in persistent slip bands of fatigued pure f.c.c. metals

Pages 171-190 | Received 06 Oct 1980, Accepted 21 May 1981, Published online: 04 Oct 2006

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (8)

J. Man, K. Obrtlík & J. Polák. (2009) Extrusions and intrusions in fatigued metals. Part 1. State of the art and history† . Philosophical Magazine 89:16, pages 1295-1336.
Read now
K. W. Schwarz & H. Mughrabi. (2006) Interaction and passing stress of two threading dislocations of opposite sign in a confined channel. Philosophical Magazine Letters 86:12, pages 773-785.
Read now
L. M. Brown . (2004) A discussion of the structure and behaviour of dipole walls in cyclic plasticity. Philosophical Magazine 84:24, pages 2501-2520.
Read now
JohnH. Cantrell & WilliamT. Yost. (1994) Acoustic harmonic generation from fatigue-induced dislocation dipoles. Philosophical Magazine A 69:2, pages 315-326.
Read now
J. Lépinoux & L.P. Kubin. (1986) Dislocation mechanisms and steady states in the cyclic deformation of facecentred cubic crystals. Philosophical Magazine A 54:5, pages 631-649.
Read now
K. Differt, U. Esmann & H. Mughrabi. (1986) A model of extrusions and intrusions in fatigued metals II. Surface roughening by random irreversible slip. Philosophical Magazine A 54:2, pages 237-258.
Read now

Articles from other publishers (54)

Jaroslav Polák, Jiří Man & Tomáš Kruml. (2024) The sources of cyclic slip irreversibility. Acta Materialia 267, pages 119709.
Crossref
Shihan Zhao, Xin Yang, Xinlong Wu, Yue Zhang & Guoyou Liu. (2023) Investigation on fatigue mechanism of solder layers in IGBT modules under high temperature gradients. Microelectronics Reliability 141, pages 114901.
Crossref
Theodore Zirkle, Ting Zhu & David L. McDowell. (2023) MULTISCALE MODELING OF HYDROGEN-AFFECTED CRACK TIP DAMAGE USING FULLY COUPLED CHEMO-MECHANICAL CRYSTAL PLASTICITY FRAMEWORK FOR AUSTENITIC STAINLESS STEEL. International Journal for Multiscale Computational Engineering 21:2, pages 21-65.
Crossref
Joseph Indeck, David Cereceda, Jason R. Mayeur & Kavan Hazeli. (2022) Understanding slip activity and void initiation in metals using machine learning-based microscopy analysis. Materials Science and Engineering: A 838, pages 142738.
Crossref
T. Babinský, I. Kuběna, I. Šulák, T. Kruml, J. Tobiáš & J. Polák. (2021) Surface relief evolution and fatigue crack initiation in René 41 superalloy cycled at room temperature. Materials Science and Engineering: A 819, pages 141520.
Crossref
Z. Zhen, H. Wang, C.Y. Teng, C.G. Bai, D.S. Xu & R. Yang. (2021) Dislocation self-interaction in TiAl: Evolution of super-dislocation dipoles revealed by atomistic simulations. Journal of Materials Science & Technology 69, pages 138-147.
Crossref
Joseph Indeck, Jefferson Cuadra, Cyril Williams & Kavan Hazeli. (2019) Accumulation and evolution of elastically induced defects under cyclic loading: Quantification and subsequent properties. International Journal of Fatigue 127, pages 522-536.
Crossref
Hao Wang. (2017) On the annihilation of dislocation dipoles in metals. AIMS Materials Science 4:6, pages 1231-1239.
Crossref
P. Chowdhury & H. Sehitoglu. (2016) Mechanisms of fatigue crack growth – a critical digest of theoretical developments. Fatigue & Fracture of Engineering Materials & Structures 39:6, pages 652-674.
Crossref
Zhengxuan Fan, Olivier Hardouin Duparc & Maxime Sauzay. (2016) Molecular dynamics simulation of surface step reconstruction and irreversibility under cyclic loading. Acta Materialia 102, pages 149-161.
Crossref
P. Peralta & C. Laird. 2016. Reference Module in Materials Science and Materials Engineering. Reference Module in Materials Science and Materials Engineering.
J. Polák & J. Man. (2015) Quantitative Model of the Surface Relief Formation in Cyclic Straining. Acta Physica Polonica A 128:4, pages 675-681.
Crossref
Piyas B. Chowdhury, Huseyin Sehitoglu & Richard G. Rateick. (2014) Predicting fatigue resistance of nano-twinned materials: Part I – Role of cyclic slip irreversibility and Peierls stress. International Journal of Fatigue 68, pages 277-291.
Crossref
Jaroslav Polák & Jiří Man. (2014) Fatigue crack initiation – The role of point defects. International Journal of Fatigue 65, pages 18-27.
Crossref
Pedro Peralta & Campbell Laird. 2014. Physical Metallurgy. Physical Metallurgy 1765 1880 .
Hael Mughrabi. (2013) Cyclic slip irreversibility and fatigue life: A microstructure-based analysis. Acta Materialia 61:4, pages 1197-1203.
Crossref
W.Z. Han, A. Vinogradov & C.R. Hutchinson. (2011) On the reversibility of dislocation slip during cyclic deformation of Al alloys containing shear-resistant particles. Acta Materialia 59:9, pages 3720-3736.
Crossref
Hael Mughrabi. (2009) Cyclic Slip Irreversibilities and the Evolution of Fatigue Damage. Metallurgical and Materials Transactions B 40:4, pages 431-453.
Crossref
Hael Mughrabi. (2009) Cyclic Slip Irreversibilities and the Evolution of Fatigue Damage. Metallurgical and Materials Transactions A 40:6, pages 1257-1279.
Crossref
H. Wang, D. Xu, R. Yang & P. Veyssière. (2008) The transformation of edge dislocation dipoles in aluminium. Acta Materialia 56:17, pages 4608-4620.
Crossref
G. Ananthakrishna. (2007) Current theoretical approaches to collective behavior of dislocations. Physics Reports 440:4-6, pages 113-259.
Crossref
A. Shyam & W.W. Milligan. (2005) A model for slip irreversibility, and its effect on the fatigue crack propagation threshold in a nickel-base superalloy. Acta Materialia 53:3, pages 835-844.
Crossref
L.P. Kubin, C. Fressengeas & G. Ananthakrishna. 2002. 101 192 .
Takashi Yamasaki, Yoshihisa Kaneko, Hiroyuki Miyamoto, Satoshi Hashimoto & Takuro Mimaki. (2001) Tensile orientation dependence of surface-roughness evolution in cyclically deformed Fe–30%Cr alloy single crystals. Materials Science and Engineering: A 319-321, pages 569-573.
Crossref
Mughrabi. (2001) On the life‐controlling microstructural fatigue mechanisms in ductile metals and alloys in the gigacycle regime. Fatigue & Fracture of Engineering Materials & Structures 22:7, pages 633-641.
Crossref
M. Hecker & H.-J. Burmeister. (1996) Strain Localization and Internal Stress Fields in Persistent Slip Bands. Physica Status Solidi (a) 158:1, pages 87-100.
Crossref
Campbell LAIRD. 1996. Physical Metallurgy. Physical Metallurgy 2293 2397 .
M. Zaiser & W. Frank. (1995) Dislocation dynamics in cyclic plastic deformation. Applied Physics A Materials Science & Processing 60:5, pages 497-503.
Crossref
U. Holzwarth & U. Essmann. (1994) Temperature-induced rearrangement of the dislocation pattern of Persistent Slip Bands in copper single crystals. Applied Physics A Solids and Surfaces 58:3, pages 197-210.
Crossref
S.N. Rosenbloom & C. Laird. (1993) Fatigue crack nucleation based on a random slip process—I. Computer model. Acta Metallurgica et Materialia 41:12, pages 3473-3482.
Crossref
U. Holzwarth & U. E�mann. (1993) The evolution of persistent slip bands in copper single crystals. Applied Physics A Solids and Surfaces 57:2, pages 131-141.
Crossref
K. Differt & U. Essmann. (1993) Dynamical model of the wall structure in persistent slip bands of fatigued metals I. Dynamical model of edge dislocation walls. Materials Science and Engineering: A 164:1-2, pages 295-299.
Crossref
K. Differt & U. Essmann. 1993. Fundamental Aspects of Dislocation Interactions. Fundamental Aspects of Dislocation Interactions 295 299 .
John H. Cantrell & William T. Yost. 1993. Review of Progress in Quantitative Nondestructive Evaluation. Review of Progress in Quantitative Nondestructive Evaluation 2059 2066 .
W.T. Yost & J.H. Cantrell. (1992) The effects of fatigue on acoustic nonlinearity in aluminum alloys. The effects of fatigue on acoustic nonlinearity in aluminum alloys.
Z.S. Basinski & S.J. Basinski. (1992) Fundamental aspects of low amplitude cyclic deformation in face-centred cubic crystals. Progress in Materials Science 36, pages 89-148.
Crossref
M. Bayerlein & H. Mughrabi. (1991) The formation of wither tongue- or ribbon-like extrusions in fatigued copper polycrystals. Acta Metallurgica et Materialia 39:7, pages 1645-1650.
Crossref
Sun Ig Hong & Campbell Laird. (2007) FATIGUE CRACK INITIATION AND GROWTH BEHAVIOR OF Cu‐16 at.% A1 SINGLE CRYSTALS. Fatigue & Fracture of Engineering Materials & Structures 14:2-3, pages 143-169.
Crossref
Sh. Kh. Khannanov. (1990) New mechanisms of failure under cyclic loading. Strength of Materials 22:9, pages 1338-1340.
Crossref
Ma Bao-Tong & C. Laird. (1989) Overview of fatigue behavior in copper single crystals—I. Surface morphology and stage I crack initiation sites for tests at constant strain amplitude. Acta Metallurgica 37:2, pages 325-336.
Crossref
L.P. Kubin & J. Lépinoux. 1989. Strength of Metals and Alloys (ICSMA 8). Strength of Metals and Alloys (ICSMA 8) 35 59 .
JT Fong, RP Wei, RJ Fields & RP GangloffWJ Baxter. 1988. Basic Questions in Fatigue: Volume I. Basic Questions in Fatigue: Volume I 67 80 .
U. Essmann & K. Differt. (1988) The nature of the wall structure in persistent slip bands of fatigued metals. Scripta Metallurgica 22:8, pages 1337-1342.
Crossref
K. Differt, U. Essmann & H. Mughrabi. (1987) Models of particle destruction in fatigued precipitation-hardened alloys. Physica Status Solidi (a) 104:1, pages 95-106.
Crossref
P Neumann. (1987) Dislocation Dynamics in Fatigue. Physica Scripta T19B, pages 537-543.
Crossref
M. Bočarek, I. Alvarez‐Armas, A. F. Armas & C. Petersen. (2004) Low cycle deformation behaviour of Zircaloy‐4 at elevated temperatures. Materialwissenschaft und Werkstofftechnik 17:9, pages 317-327.
Crossref
P. Neumann. (1986) Low energy dislocation configurations: A possible key to the understanding of fatigue. Materials Science and Engineering 81, pages 465-475.
Crossref
H. Mughrabi. 1986. Strength of Metals and Alloys (ICSMA 7). Strength of Metals and Alloys (ICSMA 7) 1917 1942 .
Z.S. Basinski & S.J. Basinski. (1985) Low amplitude fatigue of copper single crystals—III. PSB sections. Acta Metallurgica 33:7, pages 1319-1327.
Crossref
Z.S Basinski & S.J Basinski. (1985) Low amplitude fatigue of copper single crystals—II. Surface observations. Acta Metallurgica 33:7, pages 1307-1317.
Crossref
J. W. Provan & Z. H. Zhai. 1985. Time-Dependent Fracture. Time-Dependent Fracture 201 212 .
Z.S. Basinski, R. Pascual & S.J. Basinski. (1983) Low amplitude fatigue of copper single crystals—I. The role of the surface in fatigue failure. Acta Metallurgica 31:4, pages 591-602.
Crossref
J Lankford, DL Davidson, WL Morris & RP WeiH Mughrabi, R Wang, K Differt & U Essmann. 1983. Fatigue Mechanisms: Advances in Quantitative Measurement of Physical Damage. Fatigue Mechanisms: Advances in Quantitative Measurement of Physical Damage 5 45 .
Z.S. Basinski & S.J. Basinski. 1982. Strength of Metals and Alloys (ICSMA 6). Strength of Metals and Alloys (ICSMA 6) 819 824 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.