70
Views
59
CrossRef citations to date
0
Altmetric
Original Articles

On the contribution of climb to high-temperature deformation in single phase γ-TiAl

&
Pages 689-699 | Received 15 Sep 1993, Accepted 10 Oct 1993, Published online: 27 Sep 2006

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (11)

F. Appel . (2005) An electron microscope study of mechanical twinning and fracture in TiAl alloys. Philosophical Magazine 85:2-3, pages 205-231.
Read now
Joël Malaplate, Daniel Caillard & Alain Couret . (2004) Interpretation of the stress dependence of creep by a mixed climb mechanism in TiAl. Philosophical Magazine 84:34, pages 3671-3687.
Read now
François Louchet & Bernard Viguier. (2000) Ordinary dislocations in γ-TiAl: Cusp unzipping, jog dragging and stress anomaly. Philosophical Magazine A 80:4, pages 765-779.
Read now
Yi Liu, Dongliang Lin, Zhiguo Liu & Zhongguang Wang. (1999) Superlattice dislocations in Ti-rich polysynthetically twinned crystals of TiAl. Philosophical Magazine A 79:12, pages 2965-2978.
Read now
Dongliang Lin, Yu Wang, Junliang Liu & ChiC. Law. (1999) Brittle‐to‐ductile transition temperature and its controlling mechanism in ti‐47Al‐2Mn‐2Nb alloy. Journal of the Chinese Institute of Engineers 22:1, pages 55-60.
Read now
Seshagiri Sriram, DennisM. Dimiduk, PeterM. Hazzledine & VijayK. Vasudevan. (1997) The geometry and nature of pinning points of ½ ⟨110] unit dislocations in binary TiAl alloys. Philosophical Magazine A 76:5, pages 965-993.
Read now
H. Inui, M. Matsumuro, D.-H. Wu & M. Yamaguchi. (1997) Temperature dependence of yield stress, deformation mode and deformation structure in single crystals of TiAl (Ti−56 at.% Al). Philosophical Magazine A 75:2, pages 395-423.
Read now
H. Inui, K. Kishida, M. Misaki, M. Kobayashi, Y. Shirai & M. Yamaguchi. (1995) Temperature dependence of yield stress, tensile elongation and deformation structures in polysynthetically twinned crystals of Ti-Al. Philosophical Magazine A 72:6, pages 1609-1631.
Read now
M. Loubradou, R. Bonnet & J.M. Pénisson. (1995) Glide transfer across structural twin plates in TiAl involving faults and deformation nanotwins. Philosophical Magazine A 72:5, pages 1381-1395.
Read now
Francois Louchet & Bernard Viguier. (1995) Modelling the flow stress anomaly in γ-TiAl II. The local pinning-unzipping model: Statistical analysis and consequences. Philosophical Magazine A 71:6, pages 1313-1333.
Read now
Bernard Viguier, KevinJ. Hemker, Joël Bonneville, Francois Louchet & Jean-Luc Martin. (1995) Modelling the flow stress anomaly in γ-TiAl I. Experimental observations of dislocation mechanisms. Philosophical Magazine A 71:6, pages 1295-1312.
Read now

Articles from other publishers (48)

Dingbang Sun, Yingchao Guo, Yongsheng Wang, Yongfeng Liang & Junpin Lin. (2024) Microstructure, tensile properties and fracture behavior of high-Nb TiAl composites reinforced by nitrogen solid solution and in-situ boride. Journal of Materials Research and Technology 29, pages 3117-3125.
Crossref
Jean-Philippe Monchoux & Daniel Ferry. (2023) Habit planes of climbing and gliding dislocations in TiAl determined in three dimensions by electron tomography. Scripta Materialia 236, pages 115679.
Crossref
Anita Chatterjee, Helmut Clemens, Heinrich Mecking, Gerhard Dehm & Eduard Arzt. (2022) Creep Behavior of γ -TiAl-Based Alloys with Fully Lamellar Microstore . International Journal of Materials Research 92:8, pages 1000-1004.
Crossref
S Gowthaman & T Jagadeesha. (2021) Investigation on the effect of temperature, pressure and grain size on the creep behavior of nickel-chromium binary alloy through molecular dynamics simulation. Engineering Research Express 3:2, pages 025045.
Crossref
Mingao Li, Shulong Xiao, Lijuan Xu, Jing Tian & Yuyong Chen. (2021) Microscale investigation of perovskite-Ti3AlC strengthening and plastic deformation in high niobium containing TiAl alloys. Journal of Alloys and Compounds 857, pages 157563.
Crossref
Claire F. Trant, Trevor C. Lindley, Nigel Martin, Mark Dixon & David Dye. (2020) Fatigue cracking in gamma titanium aluminide. Materials Science and Engineering: A 798, pages 140202.
Crossref
Fei Zhao, Jie Zhang, Chenwei He, Yong Zhang, Xiaolei Gao & Lu Xie. (2020) Molecular Dynamics Simulation on Creep Behavior of Nanocrystalline TiAl Alloy. Nanomaterials 10:9, pages 1693.
Crossref
Alain Couret, Jean-Philippe Monchoux & Daniel Caillard. (2019) On the high creep strength of the W containing IRIS-TiAl alloy at 850 °C. Acta Materialia 181, pages 331-341.
Crossref
Ning Cui, Qianqian Wu, Kexiao Bi, Tiewei Xu & Fantao Kong. (2019) Effect of Heat Treatment on Microstructures and Mechanical Properties of a Novel β-Solidifying TiAl Alloy. Materials 12:10, pages 1672.
Crossref
Soumaya Naanani, Jean-Philippe Monchoux, Catherine Mabru & Alain Couret. (2018) Pure climb of [001] dislocations in TiAl at 850 °C. Scripta Materialia 149, pages 53-57.
Crossref
Helal Chowdhury, Holm Altenbach, Manja Krüger & Konstantin Naumenko. (2017) Reviewing the class of Al-rich Ti-Al alloys: modeling high temperature plastic anisotropy and asymmetry. Mechanics of Advanced Materials and Modern Processes 3:1.
Crossref
Bin Zhu, Xiangyi Xue, Hongchao Kou, Bin Tang & Jinshan Li. (2017) Effect of thermal stresses on the microstructure of the continuous cooling TiAl alloys. Intermetallics 90, pages 152-158.
Crossref
F. Appel, R. Wagner & Vinod Kumar. 2017. Reference Module in Materials Science and Materials Engineering. Reference Module in Materials Science and Materials Engineering.
Zofia Trzaska, Alain Couret & Jean-Philippe Monchoux. (2016) Spark plasma sintering mechanisms at the necks between TiAl powder particles. Acta Materialia 118, pages 100-108.
Crossref
F. Appel, H. Clemens & F.D. Fischer. (2016) Modeling concepts for intermetallic titanium aluminides. Progress in Materials Science 81, pages 55-124.
Crossref
P. Schallow & H.-J. Christ. (2013) High-temperature fatigue behaviour of a second generation near-γ titanium aluminide sheet material under isothermal and thermomechanical conditions. International Journal of Fatigue 53, pages 15-25.
Crossref
Cong-zhang QIU, Yong LIU, Lan HUANG, bin LIU, Wei ZHANG, Yue-hui HE & Bai-yun HUANG. (2012) Tuning mechanical properties for β(B2)-containing TiAl intermetallics. Transactions of Nonferrous Metals Society of China 22:11, pages 2593-2603.
Crossref
Fritz Appel, Jonathan David Heaton Paul & Michael Oehring. 2011. Gamma Titanium Aluminide Alloys. Gamma Titanium Aluminide Alloys 125 248 .
Fritz Appel, Jonathan David Heaton Paul & Michael Oehring. 2011. Gamma Titanium Aluminide Alloys. Gamma Titanium Aluminide Alloys 71 124 .
Joël Malaplate, Daniel Caillard & Alain Couret. (2005) Correlation between creep activation parameters and microscopic dislocation behaviour in γ TiAl alloys. Materials Science and Engineering: A 400-401, pages 105-108.
Crossref
F. Appel, M. Oehring, J.D.H. Paul, Ch. Klinkenberg & T. Carneiro. (2004) Physical aspects of hot-working gamma-based titanium aluminides. Intermetallics 12:7-9, pages 791-802.
Crossref
Alain Couret & Joel Malaplate. (2011) Creep of TiAl alloys at 750°C under moderate stress. MRS Proceedings 842.
Crossref
J. Lapin, L. Ondrúš & O. Bajana. (2003) Effect of Al2O3 particles on mechanical properties of directionally solidified intermetallic Ti–46Al–2W–0.5Si alloy. Materials Science and Engineering: A 360:1-2, pages 85-95.
Crossref
G. Babu Viswanathan, Michael J. Mills & Vijay K. Vasudevan. (2003) Microstructural effects on the tensile properties and deformation behavior of a Ti-48Al gamma titanium aluminide. Metallurgical and Materials Transactions A 34:10, pages 2113-2127.
Crossref
F. Appel & M. Oehring. 2002. Titan und Titanlegierungen. Titan und Titanlegierungen 39 103 .
A. Chatterjee, H. Mecking, E. Arzt & H. Clemens. (2002) Creep behavior of γ-TiAl sheet material with differently spaced fully lamellar microstructures. Materials Science and Engineering: A 329-331, pages 840-846.
Crossref
F. Appel. (2001) Diffusion assisted dislocation climb in intermetallic gamma TiAl. Materials Science and Engineering: A 317:1-2, pages 115-127.
Crossref
F. Appel & R. Wagner. 2001. Encyclopedia of Materials: Science and Technology. Encyclopedia of Materials: Science and Technology 4246 4264 .
F. Appel, M. Oehring & R. Wagner. (2000) Novel design concepts for gamma-base titanium aluminide alloys. Intermetallics 8:9-11, pages 1283-1312.
Crossref
Dongliang Lin, Yu Wang, Junliang Liu & Chi C. Law. (2000) The effects of temperature, strain rate and minor boron on tensile properties of wrought Ti–47Al–2Mn–2Nb alloy. Intermetallics 8:5-6, pages 549-558.
Crossref
J.M.K. Wiezorek, P.M. DeLuca & H.L. Fraser. (2000) Mechanisms of plasticity and fracture of partially lamellar titanium aluminum. Intermetallics 8:2, pages 99-113.
Crossref
Fritz Appel, Helmut Clemens & Michael Oehring. (2011) Recent Advances in Development and Processing of Titanium Aluminide Alloys. MRS Proceedings 646.
Crossref
M. J. Mills. 2000. Multiscale Phenomena in Plasticity: From Experiments to Phenomenology, Modelling and Materials Engineering. Multiscale Phenomena in Plasticity: From Experiments to Phenomenology, Modelling and Materials Engineering 469 478 .
W.J. Zhang, Z.C. Liu, G.L. Chen & Y.-W. Kim. (1999) Deformation mechanisms in a high-Nb containing γ–TiAl alloy at 900°C. Materials Science and Engineering: A 271:1-2, pages 416-423.
Crossref
G.B Viswanathan, V.K Vasudevan & M.J Mills. (1999) Modification of the jogged-screw model for creep of γ-TiAl. Acta Materialia 47:5, pages 1399-1411.
Crossref
A. Gorzel & G. Sauthoff. (1999) Diffusion creep of intermetallic TiAl alloys. Intermetallics 7:3-4, pages 371-380.
Crossref
F. Appel, U. Lorenz & M. Oehring. (2011) An Electron Microscope Study of Diffusion Assisted Dislocation Processes in Intermetallic Gamma TiAl. MRS Proceedings 589.
Crossref
M. J. Mills, G. B. Viswanathan, R. Srinivasan, M.F. Savage, R.D. Noebe & M. S. Daw. (2011) Dislocation Structure and Deformation Behavior of Intermetallic Compounds. MRS Proceedings 578.
Crossref
F. Appel & R. Wagner. (1998) Microstructure and deformation of two-phase γ-titanium aluminides. Materials Science and Engineering: R: Reports 22:5, pages 187-268.
Crossref
J. A. Jimenez, J. Wesemann & G. Frommeyer. (1998) High-temperature deformation behavior of the intermetallic Ti-47 At. Pct Al-3 At. Pct Cr alloy. Metallurgical and Materials Transactions A 29:5, pages 1425-1430.
Crossref
J.D.H. Paul, F. Appel & R. Wagner. (1998) The compression behaviour of niobium alloyed γ-titanium alumindies. Acta Materialia 46:4, pages 1075-1085.
Crossref
Dongliang Lin(T. L. Lin)Yu Wang, Junliang Liu & Chi C. Law. (2011) The Effects of Strain Rate and Minor Baron Addition on Brittle-to-Ductile Transition Temperature in Gamma TiAl Alloy. MRS Proceedings 552.
Crossref
F. Appel, U. Lorenz, M. Oehring, U. Sparka & R. Wagner. (1997) Thermally activated deformation mechanisms in micro-alloyed two-phase titanium amminide alloys. Materials Science and Engineering: A 233:1-2, pages 1-14.
Crossref
U. Messerschmidt, D. Baither, M. Bartsch, B. Baufeld, D. Häuβler, R. Haushälter & M. Wollgarten. (2011) Hvem in situ Study of High-Temperature Deformation of Ceramic and Metallic Materials . MRS Proceedings 404.
Crossref
J. Beddoes, W. Wallace & L. Zhao. (2013) Current understanding of creep behaviour of near γ-titanium aluminides. International Materials Reviews 40:5, pages 197-217.
Crossref
B. Viguier, M. Cieslar, K. J. Hemker & J. L. Martin. (2011) Quantitative Observations in Dislocation Mechanisms in Gamma TiAl. MRS Proceedings 364.
Crossref
B. Viguier, J. Bonneville, K. J. Hemker & J. L. Martin. (2011) The Temperature Dependence of the Mechanical Properties of Gamma TiAl. MRS Proceedings 364.
Crossref
Fritz Appel, Ulf Sparka & Richard Wagner. (2011) Thermally Activated Processes and Dislocation Mobilities in Two-Phase γ-Titanium Aluminides. MRS Proceedings 364.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.